A072997 Smallest prime p such that Product_{primes q <= p} q+1 >= n*Product_{primes q <= p} q.
2, 3, 13, 31, 89, 239, 617, 1571, 4007, 10141, 25673, 64853, 163367, 412007, 1037759, 2614369, 6584857, 16585291, 41764859, 105178831, 264877933, 667038311, 1679809291, 4230219377, 10652786759, 26826453991, 67555877849
Offset: 1
Programs
-
Mathematica
n=x=y=1; Do[x *= (Prime[s] + 1); y *= Prime[s]; If[x >= n*y, Print[Prime[s]]; n++ ], {s, 1, 10^6}] (* Ryan Propper, Jul 22 2005 *)
-
PARI
a(n)=if(n<0,0,s=1; while(prod(i=1,s, prime(i)+1)
Formula
It seems that lim_{n -> oo} a(n+1)/a(n) exists and is > 2.
Limit_{n -> oo} a(n+1)/a(n) = exp(zeta(2)/exp(gamma)) = 2.518... (A362151). - Amiram Eldar, Aug 26 2025
Extensions
7 more terms from Ryan Propper, Jul 22 2005
a(18)-a(22) added by Amiram Eldar, Aug 24 2018 from the data at A072986
a(23)-a(27) from Keith F. Lynch, Jan 13 2024
Comments