A073051 Least k such that Sum_{i=1..k} (prime(i) + prime(i+2) - 2*prime(i+1)) = 2n + 1.
1, 3, 8, 23, 33, 45, 29, 281, 98, 153, 188, 262, 366, 428, 589, 737, 216, 1182, 3301, 2190, 1878, 1830, 7969, 3076, 3426, 2224, 3792, 8027, 4611, 4521, 3643, 8687, 14861, 12541, 15782, 3384, 34201, 19025, 17005, 44772, 23282, 38589, 14356
Offset: 1
Keywords
Examples
a(3) = 8 because 1+0+2-2+2-2+2+2 = 5 and (5+1)/2 = 3.
Links
Crossrefs
Programs
-
Mathematica
NextPrim[n_Integer] := Block[{k = n + 1}, While[ !PrimeQ[k], k++ ]; k]; a = Table[0, {50}]; s = 0; k = 1; p = 0; q = 2; r = 3; While[k < 10^6, p = q; q = r; r = NextPrim[q]; s = s + p + r - 2q; If[s < 101 && a[[(s + 1)/2]] == 0, a[[(s + 1)/2]] = k]; k++ ]; a
-
PARI
a001223(n) = prime(n+1) - prime(n); a(n) = {my(k = 1); while(2*n != A001223(k+1), k++); k;} \\ Michel Marcus, Nov 20 2016
Formula
a(n) = A038664(n) - 1. - Filip Zaludek, Nov 19 2016
Comments