A073095 Numbers k such that the final nonzero digit of k! is the same as the last digit of binomial(2k,k) (in base 10).
5, 12, 26, 31, 35, 51, 56, 60, 136, 152, 157, 177, 182, 252, 257, 275, 280, 287, 300, 305, 312, 627, 632, 650, 655, 662, 675, 680, 687, 751, 756, 760, 786, 811, 886, 902, 907, 927, 932, 1251, 1256, 1260, 1286, 1311, 1377, 1382, 1400, 1405, 1412, 1425
Offset: 1
Examples
12! = 479001600, binomial(24,12) = 2704156, and the last nonzero digit of 12! is the same as the last digit of binomial(24,12), hence 12 is in the sequence.
Links
- Chai Wah Wu, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
Select[Range[1500],Mod[#!/10^IntegerExponent[#!,10],10]==Mod[Binomial[2 #,#],10]&] (* Harvey P. Dale, Sep 13 2022 *)
-
Python
from math import comb from functools import reduce from itertools import count, zip_longest, islice from sympy.ntheory.factor_ import digits from sympy.ntheory.modular import crt def A073095_gen(startvalue=2): # generator of terms >= startvalue for n in count(max(startvalue,2)): s, s2 = digits(n,5)[-1:0:-1], digits(n<<1,5)[-1:0:-1] if reduce(lambda x,y:x*y%10,(((6,2,4,8,6,2,4,8,2,4,8,6,6,2,4,8,4,8,6,2)[(a<<2)|(i*a&3)] if i*a else (1,1,2,6,4)[a]) for i, a in enumerate(s)),6)==crt([2,5],[0,reduce(lambda x,y:x*y%5,(comb(a, b) for a, b in zip_longest(s2,s,fillvalue=0)))])[0]: yield n A073095_list = list(islice(A073095_gen(),50)) # Chai Wah Wu, Dec 07 2023
Formula
k such that A008904(k) = binomial(2k, k) reduced (mod 10).