cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A073101 Number of integer solutions (x,y,z) to 4/n = 1/x + 1/y + 1/z satisfying 0 < x < y < z.

Original entry on oeis.org

0, 0, 1, 1, 2, 5, 5, 6, 4, 9, 7, 15, 4, 14, 33, 22, 4, 21, 9, 30, 25, 22, 19, 45, 10, 17, 25, 36, 7, 72, 17, 62, 27, 22, 59, 69, 9, 29, 67, 84, 7, 77, 12, 56, 87, 39, 32, 142, 16, 48, 46, 53, 13, 82, 92, 124, 37, 30, 25, 178, 11, 34, 147, 118, 49, 94, 15, 67, 51, 176, 38, 191, 7
Offset: 1

Views

Author

Robert G. Wilson v, Aug 18 2002

Keywords

Comments

In 1948 Erdős and Straus conjectured that for any positive integer n >= 2 the equation 4/n = 1/x + 1/y + 1/z has a solution with positive integers x, y and z (without the additional requirement 0 < x < y < z). All of the solutions can be printed by removing the comment symbols from the Mathematica program. For the solution (x,y,z) having the largest z value, see (A075245, A075246, A075247). See A075248 for Sierpiński's conjecture for 5/n.
See (A257839, A257840, A257841) for the lexicographically smallest solutions, and A257843 for the differences between these and those with largest z-value. - M. F. Hasler, May 16 2015

Examples

			a(5)=2 because there are two solutions: 4/5 = 1/2 + 1/4 + 1/20 and 4/5 = 1/2 + 1/5 + 1/10.
		

Crossrefs

Cf. A192787 (# distinct solutions with x <= y <= z).

Programs

  • Haskell
    import Data.Ratio ((%), numerator, denominator)
    a073101 n = length [(x,y) |
       x <- [n `div` 4 + 1 .. 3 * n `div` 4],   let y' = recip $ 4%n - 1%x,
       y <- [floor y' + 1 .. floor (2*y') + 1], let z' = recip $ 4%n - 1%x - 1%y,
       denominator z' == 1 && numerator z' > y && y > x]
    -- Reinhard Zumkeller, Jan 03 2011
    
  • Maple
    A:= proc(n)
       local x,t, p,q,ds,zs,ys,js, tot,j;
    tot:= 0;
    for x from 1+floor(n/4) to ceil(3*n/4)-1 do
        t:= 4/n - 1/x;
        p:= numer(t);
        q:= denom(t);
        ds:= convert(select(d -> (d < q) and d + q mod p = 0,
              numtheory:-divisors(q^2)),list);
        ys:= map(d -> (d+q)/p, ds);
        zs:= map(d -> (q^2/d+q)/p, ds);
        js:= select(j -> ys[j] > x,[$1..nops(ds)]);
        tot:= tot + nops(js);
    od;
    tot;
    end proc:
    seq(A(n),n=2..100); # Robert Israel, Aug 22 2014
  • Mathematica
    (* download Egypt.m from D. Eppstein's site and put it into MyOwn directory underneath Mathematica\AddOns\StandardPackages *) Needs["MyOwn`Egypt`"]; Table[ Length[ EgyptianFraction[4/n, Method -> Lexicographic, MaxTerms -> 3, MinTerms -> 3, Duplicates -> Disallow, OutputFormat -> Plain]], {n, 5, 80}]
    m = 4; For[lst = {}; n = 2, n <= 100, n++, cnt = 0; xr = n/m; If[IntegerQ[xr], xMin = xr + 1, xMin = Ceiling[xr]]; If[IntegerQ[3xr], xMax = 3xr - 1, xMax = Floor[3xr]]; For[x = xMin, x <= xMax, x++, yr = 1/(m/n - 1/x); If[IntegerQ[yr], yMin = yr + 1, yMin = Ceiling[yr]]; If[IntegerQ[2yr], yMax = 2yr + 1, yMax = Ceiling[2yr]]; For[y = yMin, y <= yMax, y++, zr = 1/(m/n - 1/x - 1/y); If[y > x && zr > y && IntegerQ[zr], z = zr; cnt++; (*Print[n, " ", x, " ", y, " ", z]*)]]]; AppendTo[lst, cnt]]; lst
    f[n_] := Length@ Solve[4/n == 1/x + 1/y + 1/z && 0 < x < y < z, {x, y, z}, Integers]; Array[f, 72, 2] (* Robert G. Wilson v, Jul 17 2013 *)
  • PARI
    A073101(n)=sum(c=n\4+1,n*3\4,sum(b=c+1,ceil(2/(t=4/n-1/c))-1,numerator(t-1/b)==1)) \\ M. F. Hasler, May 15 2015

Extensions

Edited by T. D. Noe, Sep 10 2002
Extended to offset 1 with a(1) = 0 by M. F. Hasler, May 16 2015