A073115 Decimal expansion of sum(k>=0, 1/2^floor(k*phi) ) where phi = (1+sqrt(5))/2.
1, 7, 0, 9, 8, 0, 3, 4, 4, 2, 8, 6, 1, 2, 9, 1, 3, 1, 4, 6, 4, 1, 7, 8, 7, 3, 9, 9, 4, 4, 4, 5, 7, 5, 5, 9, 7, 0, 1, 2, 5, 0, 2, 2, 0, 5, 7, 6, 7, 8, 6, 0, 5, 1, 6, 9, 5, 7, 0, 0, 2, 6, 4, 4, 6, 5, 1, 2, 8, 7, 1, 2, 8, 1, 4, 8, 4, 6, 5, 9, 6, 2, 4, 7, 8, 3, 1, 6, 1, 3, 2, 4, 5, 9, 9, 9, 3, 8, 8, 3, 9, 2, 6, 5, 3
Offset: 1
Examples
1.70980344286129131464178739944457559701250220576786...
References
- S. Wolfram, "A new kind of science", p. 913
Links
- J. L. Davison, A series and its associated continued fraction, Proc. Amer. Math. Soc. 63 (1977), pp. 29-32.
- Index entries for transcendental numbers
Programs
-
Mathematica
Take[ RealDigits[ Sum[N[1/2^Floor[k*GoldenRatio], 120], {k, 0, 300}]][[1]], 105] (* Jean-François Alcover, Jul 28 2011 *)
-
PARI
phi=(1+sqrt(5))/2; suminf(n=0,2.^-(n*phi\1)) \\ Charles R Greathouse IV, Jul 22 2013
-
PARI
phi=(1+sqrt(5))/2; suminf(n=1, (phi*n\1)/2^n) - 1 /* Michael Somos, May 22 2021 */
Formula
Equals 1 + A014565.
Comments