A073119 Total number of parts which are positive powers of 2 in all partitions of n.
0, 1, 1, 4, 5, 10, 14, 26, 35, 56, 77, 116, 157, 226, 302, 424, 560, 762, 998, 1334, 1727, 2270, 2914, 3779, 4809, 6163, 7781, 9875, 12378, 15565, 19383, 24191, 29934, 37093, 45643, 56201, 68789, 84212, 102564, 124903, 151424, 183499, 221508
Offset: 1
Examples
a(5) = 5 because in the partitions [1,1,1,1,1], [1,1,1,2'], [1,2'2'], [1,1,3], [2',3],[1,4'], [5] we have 5 positive powers of 2 (they are marked). - _Emeric Deutsch_, Sep 19 2016.
Links
- Alois P. Heinz and Vaclav Kotesovec, Table of n, a(n) for n = 1..10000 (terms 1..2000 from Alois P. Heinz)
Programs
-
Maple
p2:= proc(n) p2(n):= is(n=2^ilog2(n)) end: p2(1):= false: b:= proc(n, i) option remember; local t, l; if n<0 then [0, 0] elif n=0 then [1, 0] elif i<1 then [0, 0] else t:= b(n, i-1); l:= b(n-i, i); [t[1]+l[1], t[2]+l[2]+ `if`(p2(i), l[1], 0)] fi end: a:= n-> b(n, n)[2]: seq(a(n), n=1..50); # Alois P. Heinz, Sep 29 2011
-
Mathematica
Needs["DiscreteMath`Combinatorica`"]; f[n_] := Length[ Select[ Log[2, Flatten[ Partitions[n]]], IntegerQ[ # ] && # > 0 & ]]; Table[ f[n], {n, 1, 45}] a[n_] := Sum[IntegerExponent[k, 2]*PartitionsP[n-k], {k, 1, n}]; Table[a[n], {n, 1, 50}] (* Jean-François Alcover, Jan 28 2014 *)
Formula
G.f.: g(x) = (Sum_{i>0} x^(h(i))/(1-x^(h(i))))/Product_{i>0}(1 - x^i), where h(i) = 2^i. - Emeric Deutsch, Sep 19 2016.
Conjecture: a(n) ~ exp(sqrt(2*n/3)*Pi)/(2*Pi*sqrt(2*n)) ~ p(n) * sqrt(6*n)/Pi, where p(n) is the partition function A000041. - Vaclav Kotesovec, Oct 07 2016
Extensions
Edited and extended by Robert G. Wilson v, Aug 26 2002