cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A073119 Total number of parts which are positive powers of 2 in all partitions of n.

Original entry on oeis.org

0, 1, 1, 4, 5, 10, 14, 26, 35, 56, 77, 116, 157, 226, 302, 424, 560, 762, 998, 1334, 1727, 2270, 2914, 3779, 4809, 6163, 7781, 9875, 12378, 15565, 19383, 24191, 29934, 37093, 45643, 56201, 68789, 84212, 102564, 124903, 151424, 183499, 221508
Offset: 1

Views

Author

Vladeta Jovovic, Aug 24 2002

Keywords

Examples

			a(5) = 5 because in the partitions [1,1,1,1,1], [1,1,1,2'], [1,2'2'], [1,1,3], [2',3],[1,4'], [5] we have 5 positive powers of 2 (they are marked). - _Emeric Deutsch_, Sep 19 2016.
		

Crossrefs

Programs

  • Maple
    p2:= proc(n) p2(n):= is(n=2^ilog2(n)) end: p2(1):= false:
    b:= proc(n, i) option remember; local t, l;
          if n<0 then [0, 0]
        elif n=0 then [1, 0]
        elif i<1 then [0, 0]
        else t:= b(n, i-1);
             l:= b(n-i, i);
             [t[1]+l[1], t[2]+l[2]+ `if`(p2(i), l[1], 0)]
          fi
        end:
    a:= n-> b(n, n)[2]:
    seq(a(n), n=1..50);  # Alois P. Heinz, Sep 29 2011
  • Mathematica
    Needs["DiscreteMath`Combinatorica`"]; f[n_] := Length[ Select[ Log[2, Flatten[ Partitions[n]]], IntegerQ[ # ] && # > 0 & ]]; Table[ f[n], {n, 1, 45}]
    a[n_] := Sum[IntegerExponent[k, 2]*PartitionsP[n-k], {k, 1, n}]; Table[a[n], {n, 1, 50}] (* Jean-François Alcover, Jan 28 2014 *)

Formula

a(n) = Sum_{k=1..n} A007814(k)*A000041(n-k).
G.f.: g(x) = (Sum_{i>0} x^(h(i))/(1-x^(h(i))))/Product_{i>0}(1 - x^i), where h(i) = 2^i. - Emeric Deutsch, Sep 19 2016.
Conjecture: a(n) ~ exp(sqrt(2*n/3)*Pi)/(2*Pi*sqrt(2*n)) ~ p(n) * sqrt(6*n)/Pi, where p(n) is the partition function A000041. - Vaclav Kotesovec, Oct 07 2016

Extensions

Edited and extended by Robert G. Wilson v, Aug 26 2002