A073133 Table by antidiagonals of T(n,k) = n*T(n,k-1) + T(n,k-2) starting with T(n,1) = 1.
1, 1, 1, 1, 2, 2, 1, 3, 5, 3, 1, 4, 10, 12, 5, 1, 5, 17, 33, 29, 8, 1, 6, 26, 72, 109, 70, 13, 1, 7, 37, 135, 305, 360, 169, 21, 1, 8, 50, 228, 701, 1292, 1189, 408, 34, 1, 9, 65, 357, 1405, 3640, 5473, 3927, 985, 55, 1, 10, 82, 528, 2549, 8658, 18901, 23184, 12970, 2378, 89
Offset: 1
Examples
Table begins: 1, 1, 2, 3, 5, 8, 13, ... 1, 2, 5, 12, 29, 70, 169, ... 1, 3, 10, 33, 109, 360, 1189, ... 1, 4, 17, 72, 305, 1292, 5473, ... etc.
Links
- G. C. Greubel, Antidiagonals n = 1..100, flattened
- Michael A. Allen and Kenneth Edwards, Fence tiling derived identities involving the metallonacci numbers squared or cubed, Fib. Q. 60:5 (2022) 5-17.
Crossrefs
Programs
-
GAP
T:= function(n,k) if k<0 then return 0; elif k=1 then return 1; else return n*T(n,k-1) + T(n,k-2); fi; end; Flat(List([1..15], n-> List([1..n], k-> T(n-k+1,k) ))); # G. C. Greubel, Aug 12 2019
-
Maple
A073133 := proc(n,k) option remember; if k <= 1 then k; else n*procname(n,k-1)+procname(n,k-2) ; end if; end proc: seq(seq( A073133(d-k,k),k=1..d-1),d=2..13) ; # R. J. Mathar, Aug 16 2019
-
Mathematica
T[n_, 1]:= 1; T[n_, k_]:= T[n, k] = If[k<0, 0, n*T[n, k-1] + T[n, k-2]]; Table[T[n-k+1, k], {n, 15}, {k, n}]//Flatten (* G. C. Greubel, Aug 12 2019 *)
-
PARI
T(n,k) = if(k==1, 1, k<0, 0, n*T(n,k-1)+T(n,k-2)); for(n=1,15, for(k=1,n, print1(T(n-k+1,k), ", "))) \\ G. C. Greubel, Aug 12 2019
-
Sage
def T(n, k): if (k<0): return 0 elif (k==1): return 1 else: return n*T(n, k-1) + T(n, k-2) [[T(n-k+1, k) for k in (1..n)] for n in (1..15)] # G. C. Greubel, Aug 12 2019
Formula
T(n,k) = [[0,1; 1,n]^{k+1}]{1,1}, n,k in {1,2,...}. - _L. Edson Jeffery, Sep 23 2012
G.f. for row n: x/(1-n*x-x^2). - L. Edson Jeffery, Aug 28 2013
Comments