cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 56 results. Next

A117936 Triangle, rows = inverse binomial transforms of A073133 columns.

Original entry on oeis.org

1, 1, 1, 2, 3, 2, 3, 9, 12, 6, 5, 24, 56, 60, 24, 8, 62, 228, 414, 360, 120, 13, 156, 864, 2400, 3480, 2520, 720, 21, 387, 3132, 12606, 27360, 32640, 20160, 5040, 34, 951, 11034, 62220, 190704, 335160, 337680, 181440, 40320, 55, 2323, 38136, 294588, 1229760, 2997120, 4394880, 3820320, 1814400, 362880
Offset: 1

Views

Author

Gary W. Adamson, Apr 03 2006

Keywords

Comments

Left border of the triangle = Fibonacci numbers, right border = factorials. Companion triangle A117937 is generated from Lucas polynomials, using analogous operations.
Note that binomial transforms are defined from offset 1 here. - R. J. Mathar, Aug 16 2019

Examples

			First few columns of A073133 are: (1, 1, 1, ...); (1, 2, 3, ...); (2, 5, 10, 17, ...); (3, 12, 33, 72, ...). As sequences, these are f(x), Fibonacci polynomials: (1); (x); (x^2 + 1); (x^3 + 2*x); (x^4 + 3*x^2 + 1); (x^5 + 4*x^3 + 3*x); ... For example, f(x), x = 1,2,3,... using (x^4 + 3*x^2 + 1) generates Column 5 of A073133: (5, 29, 109, 305, ...).
Inverse binomial transforms of the foregoing columns generates the triangle rows:
  1;
  1,  1;
  2,  3,   2;
  3,  9,  12,   6;
  5, 24,  56,  60,  24;
  8, 62, 228, 414, 360, 120;
  ...
		

Crossrefs

Cf. A006684 (column 2), A309717 (column 3 halved).

Programs

  • Maple
    A117936 := proc(n,k)
        add( A073133(i+1,n)*binomial(k-1,i)*(-1)^(i-k-1),i=0..k-1) ;
    end proc:
    seq(seq(A117936(n,k),k=1..n),n=1..13) ; # R. J. Mathar, Aug 16 2019
  • Mathematica
    (* A = A073133 *) A[, 1] = 1; A[n, k_] := A[n, k] = If[k < 0, 0, n A[n, k - 1] + A[n, k - 2]];
    T[n_, k_] := Sum[A[i+1, n] Binomial[k-1, i] (-1)^(i - k - 1), {i, 0, k-1}];
    Table[T[n, k], {n, 1, 10}, {k, 1, n}] // Flatten (* Jean-François Alcover, Apr 01 2020, from Maple *)
  • Sage
    @CachedFunction
    def A073133(n,k): return 0 if (k<0) else 1 if (k==1) else n*A073133(n,k-1) + A073133(n,k-2)
    def A117936(n,k): return sum( (-1)^(j-k+1)*binomial(k-1, j)*A073133(j+1,n) for j in (0..k-1) )
    flatten([[A117936(n,k) for k in (1..n)] for n in (1..12)]) # G. C. Greubel, Oct 23 2021

Formula

Inverse binomial transforms of A073133 columns. Such columns are f(x), Fibonacci polynomials.

A000045 Fibonacci numbers: F(n) = F(n-1) + F(n-2) with F(0) = 0 and F(1) = 1.

Original entry on oeis.org

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181, 6765, 10946, 17711, 28657, 46368, 75025, 121393, 196418, 317811, 514229, 832040, 1346269, 2178309, 3524578, 5702887, 9227465, 14930352, 24157817, 39088169, 63245986, 102334155
Offset: 0

Views

Author

Keywords

Comments

D. E. Knuth writes: "Before Fibonacci wrote his work, the sequence F_{n} had already been discussed by Indian scholars, who had long been interested in rhythmic patterns that are formed from one-beat and two-beat notes. The number of such rhythms having n beats altogether is F_{n+1}; therefore both Gopāla (before 1135) and Hemachandra (c. 1150) mentioned the numbers 1, 2, 3, 5, 8, 13, 21, ... explicitly." (TAOCP Vol. 1, 2nd ed.) - Peter Luschny, Jan 11 2015
In keeping with historical accounts (see the references by P. Singh and S. Kak), the generalized Fibonacci sequence a, b, a + b, a + 2b, 2a + 3b, 3a + 5b, ... can also be described as the Gopala-Hemachandra numbers H(n) = H(n-1) + H(n-2), with F(n) = H(n) for a = b = 1, and Lucas sequence L(n) = H(n) for a = 2, b = 1. - Lekraj Beedassy, Jan 11 2015
Susantha Goonatilake writes: "[T]his sequence was well known in South Asia and used in the metrical sciences. Its development is attributed in part to Pingala (200 BC), later being associated with Virahanka (circa 700 AD), Gopala (circa 1135), and Hemachandra (circa 1150)—all of whom lived and worked prior to Fibonacci." (Toward a Global Science: Mining Civilizational Knowledge, p. 126) - Russ Cox, Sep 08 2021
Also sometimes called Hemachandra numbers.
Also sometimes called Lamé's sequence.
For a photograph of "Fibonacci"'s 1202 book, see the Leonardo of Pisa link below.
F(n+2) = number of binary sequences of length n that have no consecutive 0's.
F(n+2) = number of subsets of {1,2,...,n} that contain no consecutive integers.
F(n+1) = number of tilings of a 2 X n rectangle by 2 X 1 dominoes.
F(n+1) = number of matchings (i.e., Hosoya index) in a path graph on n vertices: F(5)=5 because the matchings of the path graph on the vertices A, B, C, D are the empty set, {AB}, {BC}, {CD} and {AB, CD}. - Emeric Deutsch, Jun 18 2001
F(n) = number of compositions of n+1 with no part equal to 1. [Cayley, Grimaldi]
Positive terms are the solutions to z = 2*x*y^4 + (x^2)*y^3 - 2*(x^3)*y^2 - y^5 - (x^4)*y + 2*y for x,y >= 0 (Ribenboim, page 193). When x=F(n), y=F(n + 1) and z > 0 then z=F(n + 1).
For Fibonacci search see Knuth, Vol. 3; Horowitz and Sahni; etc.
F(n) is the diagonal sum of the entries in Pascal's triangle at 45 degrees slope. - Amarnath Murthy, Dec 29 2001 (i.e., row sums of A030528, R. J. Mathar, Oct 28 2021)
F(n+1) is the number of perfect matchings in ladder graph L_n = P_2 X P_n. - Sharon Sela (sharonsela(AT)hotmail.com), May 19 2002
F(n+1) = number of (3412,132)-, (3412,213)- and (3412,321)-avoiding involutions in S_n.
This is also the Horadam sequence (0,1,1,1). - Ross La Haye, Aug 18 2003
An INVERT transform of A019590. INVERT([1,1,2,3,5,8,...]) gives A000129. INVERT([1,2,3,5,8,13,21,...]) gives A028859. - Antti Karttunen, Dec 12 2003
Number of meaningful differential operations of the k-th order on the space R^3. - Branko Malesevic, Mar 02 2004
F(n) = number of compositions of n-1 with no part greater than 2. Example: F(4) = 3 because we have 3 = 1+1+1 = 1+2 = 2+1.
F(n) = number of compositions of n into odd parts; e.g., F(6) counts 1+1+1+1+1+1, 1+1+1+3, 1+1+3+1, 1+3+1+1, 1+5, 3+1+1+1, 3+3, 5+1. - Clark Kimberling, Jun 22 2004
F(n) = number of binary words of length n beginning with 0 and having all runlengths odd; e.g., F(6) counts 010101, 010111, 010001, 011101, 011111, 000101, 000111, 000001. - Clark Kimberling, Jun 22 2004
The number of sequences (s(0),s(1),...,s(n)) such that 0 < s(i) < 5, |s(i)-s(i-1)|=1 and s(0)=1 is F(n+1); e.g., F(5+1) = 8 corresponds to 121212, 121232, 121234, 123212, 123232, 123234, 123432, 123434. - Clark Kimberling, Jun 22 2004 [corrected by Neven Juric, Jan 09 2009]
Likewise F(6+1) = 13 corresponds to these thirteen sequences with seven numbers: 1212121, 1212123, 1212321, 1212323, 1212343, 1232121, 1232123, 1232321, 1232323, 1232343, 1234321, 1234323, 1234343. - Neven Juric, Jan 09 2008
A relationship between F(n) and the Mandelbrot set is discussed in the link "Le nombre d'or dans l'ensemble de Mandelbrot" (in French). - Gerald McGarvey, Sep 19 2004
For n > 0, the continued fraction for F(2n-1)*phi = [F(2n); L(2n-1), L(2n-1), L(2n-1), ...] and the continued fraction for F(2n)*phi = [F(2n+1)-1; 1, L(2n)-2, 1, L(2n)-2, ...]. Also true: F(2n)*phi = [F(2n+1); -L(2n), L(2n), -L(2n), L(2n), ...] where L(i) is the i-th Lucas number (A000204). - Clark Kimberling, Nov 28 2004 [corrected by Hieronymus Fischer, Oct 20 2010]
For any nonzero number k, the continued fraction [4,4,...,4,k], which is n 4's and a single k, equals (F(3n) + k*F(3n+3))/(F(3n-3) + k*F(3n)). - Greg Dresden, Aug 07 2019
F(n+1) (for n >= 1) = number of permutations p of 1,2,3,...,n such that |k-p(k)| <= 1 for k=1,2,...,n. (For <= 2 and <= 3, see A002524 and A002526.) - Clark Kimberling, Nov 28 2004
The ratios F(n+1)/F(n) for n > 0 are the convergents to the simple continued fraction expansion of the golden section. - Jonathan Sondow, Dec 19 2004
Lengths of successive words (starting with a) under the substitution: {a -> ab, b -> a}. - Jeroen F.J. Laros, Jan 22 2005
The Fibonacci sequence, like any additive sequence, naturally tends to be geometric with common ratio not a rational power of 10; consequently, for a sufficiently large number of terms, Benford's law of first significant digit (i.e., first digit 1 <= d <= 9 occurring with probability log_10(d+1) - log_10(d)) holds. - Lekraj Beedassy, Apr 29 2005 (See Brown-Duncan, 1970. - N. J. A. Sloane, Feb 12 2017)
F(n+2) = Sum_{k=0..n} binomial(floor((n+k)/2),k), row sums of A046854. - Paul Barry, Mar 11 2003
Number of order ideals of the "zig-zag" poset. See vol. 1, ch. 3, prob. 23 of Stanley. - Mitch Harris, Dec 27 2005
F(n+1)/F(n) is also the Farey fraction sequence (see A097545 for explanation) for the golden ratio, which is the only number whose Farey fractions and continued fractions are the same. - Joshua Zucker, May 08 2006
a(n+2) is the number of paths through 2 plates of glass with n reflections (reflections occurring at plate/plate or plate/air interfaces). Cf. A006356-A006359. - Mitch Harris, Jul 06 2006
F(n+1) equals the number of downsets (i.e., decreasing subsets) of an n-element fence, i.e., an ordered set of height 1 on {1,2,...,n} with 1 > 2 < 3 > 4 < ... n and no other comparabilities. Alternatively, F(n+1) equals the number of subsets A of {1,2,...,n} with the property that, if an odd k is in A, then the adjacent elements of {1,2,...,n} belong to A, i.e., both k - 1 and k + 1 are in A (provided they are in {1,2,...,n}). - Brian Davey, Aug 25 2006
Number of Kekulé structures in polyphenanthrenes. See the paper by Lukovits and Janezic for details. - Parthasarathy Nambi, Aug 22 2006
Inverse: With phi = (sqrt(5) + 1)/2, round(log_phi(sqrt((sqrt(5) a(n) + sqrt(5 a(n)^2 - 4))(sqrt(5) a(n) + sqrt(5 a(n)^2 + 4)))/2)) = n for n >= 3, obtained by rounding the arithmetic mean of the inverses given in A001519 and A001906. - David W. Cantrell (DWCantrell(AT)sigmaxi.net), Feb 19 2007
A result of Jacobi from 1848 states that every symmetric matrix over a p.i.d. is congruent to a triple-diagonal matrix. Consider the maximal number T(n) of summands in the determinant of an n X n triple-diagonal matrix. This is the same as the number of summands in such a determinant in which the main-, sub- and superdiagonal elements are all nonzero. By expanding on the first row we see that the sequence of T(n)'s is the Fibonacci sequence without the initial stammer on the 1's. - Larry Gerstein (gerstein(AT)math.ucsb.edu), Mar 30 2007
Suppose psi=log(phi). We get the representation F(n)=(2/sqrt(5))*sinh(n*psi) if n is even; F(n)=(2/sqrt(5))*cosh(n*psi) if n is odd. There is a similar representation for Lucas numbers (A000032). Many Fibonacci formulas now easily follow from appropriate sinh and cosh formulas. For example: the de Moivre theorem (cosh(x)+sinh(x))^m = cosh(mx)+sinh(mx) produces L(n)^2 + 5F(n)^2 = 2L(2n) and L(n)F(n) = F(2n) (setting x=n*psi and m=2). - Hieronymus Fischer, Apr 18 2007
Inverse: floor(log_phi(sqrt(5)*F(n)) + 1/2) = n, for n > 1. Also for n > 0, floor((1/2)*log_phi(5*F(n)*F(n+1))) = n. Extension valid for integer n, except n=0,-1: floor((1/2)*sign(F(n)*F(n+1))*log_phi|5*F(n)*F(n+1)|) = n (where sign(x) = sign of x). - Hieronymus Fischer, May 02 2007
F(n+2) = the number of Khalimsky-continuous functions with a two-point codomain. - Shiva Samieinia (shiva(AT)math.su.se), Oct 04 2007
This is a_1(n) in the Doroslovacki reference.
Let phi = A001622 then phi^n = (1/phi)*a(n) + a(n+1). - Gary W. Adamson, Dec 15 2007
The sequence of first differences, F(n+1)-F(n), is essentially the same sequence: 1, 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, ... - Colm Mulcahy, Mar 03 2008
Equals row sums of triangle A144152. - Gary W. Adamson, Sep 12 2008
Except for the initial term, the numerator of the convergents to the recursion x = 1/(x+1). - Cino Hilliard, Sep 15 2008
F(n) is the number of possible binary sequences of length n that obey the sequential construction rule: if last symbol is 0, add the complement (1); else add 0 or 1. Here 0,1 are metasymbols for any 2-valued symbol set. This rule has obvious similarities to JFJ Laros's rule, but is based on addition rather than substitution and creates a tree rather than a single sequence. - Ross Drewe, Oct 05 2008
F(n) = Product_{k=1..(n-1)/2} (1 + 4*cos^2 k*Pi/n), where terms = roots to the Fibonacci product polynomials, A152063. - Gary W. Adamson, Nov 22 2008
Fp == 5^((p-1)/2) mod p, p = prime [Schroeder, p. 90]. - Gary W. Adamson & Alexander R. Povolotsky, Feb 21 2009
A000032(n)^2 - 5*F(n)^2 = 4*(-1)^n. - Gary W. Adamson, Mar 11 2009
Output of Kasteleyn's formula for the number of perfect matchings of an m X n grid specializes to the Fibonacci sequence for m=2. - Sarah-Marie Belcastro, Jul 04 2009
(F(n),F(n+4)) satisfies the Diophantine equation: X^2 + Y^2 - 7XY = 9*(-1)^n. - Mohamed Bouhamida, Sep 06 2009
(F(n),F(n+2)) satisfies the Diophantine equation: X^2 + Y^2 - 3XY = (-1)^n. - Mohamed Bouhamida, Sep 08 2009
a(n+2) = A083662(A131577(n)). - Reinhard Zumkeller, Sep 26 2009
Difference between number of closed walks of length n+1 from a node on a pentagon and number of walks of length n+1 between two adjacent nodes on a pentagon. - Henry Bottomley, Feb 10 2010
F(n+1) = number of Motzkin paths of length n having exactly one weak ascent. A Motzkin path of length n is a lattice path from (0,0) to (n,0) consisting of U=(1,1), D=(1,-1) and H=(1,0) steps and never going below the x-axis. A weak ascent in a Motzkin path is a maximal sequence of consecutive U and H steps. Example: a(5)=5 because we have (HHHH), (HHU)D, (HUH)D, (UHH)D, and (UU)DD (the unique weak ascent is shown between parentheses; see A114690). - Emeric Deutsch, Mar 11 2010
(F(n-1) + F(n+1))^2 - 5*F(n-2)*F(n+2) = 9*(-1)^n. - Mohamed Bouhamida, Mar 31 2010
From the Pinter and Ziegler reference's abstract: authors "show that essentially the Fibonacci sequence is the unique binary recurrence which contains infinitely many three-term arithmetic progressions. A criterion for general linear recurrences having infinitely many three-term arithmetic progressions is also given." - Jonathan Vos Post, May 22 2010
F(n+1) = number of paths of length n starting at initial node on the path graph P_4. - Johannes W. Meijer, May 27 2010
F(k) = number of cyclotomic polynomials in denominator of generating function for number of ways to place k nonattacking queens on an n X n board. - Vaclav Kotesovec, Jun 07 2010
As n->oo, (a(n)/a(n-1) - a(n-1)/a(n)) tends to 1.0. Example: a(12)/a(11) - a(11)/a(12) = 144/89 - 89/144 = 0.99992197.... - Gary W. Adamson, Jul 16 2010
From Hieronymus Fischer, Oct 20 2010: (Start)
Fibonacci numbers are those numbers m such that m*phi is closer to an integer than k*phi for all k, 1 <= k < m. More formally: a(0)=0, a(1)=1, a(2)=1, a(n+1) = minimal m > a(n) such that m*phi is closer to an integer than a(n)*phi.
For all numbers 1 <= k < F(n), the inequality |k*phi-round(k*phi)| > |F(n)*phi-round(F(n)*phi)| holds.
F(n)*phi - round(F(n)*phi) = -((-phi)^(-n)), for n > 1.
Fract(1/2 + F(n)*phi) = 1/2 -(-phi)^(-n), for n > 1.
Fract(F(n)*phi) = (1/2)*(1 + (-1)^n) - (-phi)^(-n), n > 1.
Inverse: n = -log_phi |1/2 - fract(1/2 + F(n)*phi)|.
(End)
F(A001177(n)*k) mod n = 0, for any integer k. - Gary Detlefs, Nov 27 2010
F(n+k)^2 - F(n)^2 = F(k)*F(2n+k), for even k. - Gary Detlefs, Dec 04 2010
F(n+k)^2 + F(n)^2 = F(k)*F(2n+k), for odd k. - Gary Detlefs, Dec 04 2010
F(n) = round(phi*F(n-1)) for n > 1. - Joseph P. Shoulak, Jan 13 2012
For n > 0: a(n) = length of n-th row in Wythoff array A003603. - Reinhard Zumkeller, Jan 26 2012
From Bridget Tenner, Feb 22 2012: (Start)
The number of free permutations of [n].
The number of permutations of [n] for which s_k in supp(w) implies s_{k+-1} not in supp(w).
The number of permutations of [n] in which every decomposition into length(w) reflections is actually composed of simple reflections. (End)
The sequence F(n+1)^(1/n) is increasing. The sequence F(n+2)^(1/n) is decreasing. - Thomas Ordowski, Apr 19 2012
Two conjectures: For n > 1, F(n+2)^2 mod F(n+1)^2 = F(n)*F(n+1) - (-1)^n. For n > 0, (F(2n) + F(2n+2))^2 = F(4n+3) + Sum_{k = 2..2n} F(2k). - Alex Ratushnyak, May 06 2012
From Ravi Kumar Davala, Jan 30 2014: (Start)
Proof of Ratushnyak's first conjecture: For n > 1, F(n+2)^2 - F(n)*F(n+1) + (-1)^n = 2*F(n+1)^2.
Consider: F(n+2)^2 - F(n)*F(n+1) - 2*F(n+1)^2
= F(n+2)^2 - F(n+1)^2 - F(n+1)^2 - F(n)*F(n+1)
= (F(n+2) + F(n+1))*(F(n+2) - F(n+1)) - F(n+1)*(F(n+1) + F(n))
= F(n+3)*F(n) - F(n+1)*F(n+2) = -(-1)^n.
Proof of second conjecture: L(n) stands for Lucas number sequence from A000032.
Consider the fact that
L(2n+1)^2 = L(4n+2) - 2
(F(2n) + F(2n+2))^2 = F(4n+1) + F(4n+3) - 2
(F(2n) + F(2n+2))^2 = (Sum_{k = 2..2n} F(2k)) + F(4n+3).
(End)
The relationship: INVERT transform of (1,1,0,0,0,...) = (1, 2, 3, 5, 8, ...), while the INVERT transform of (1,0,1,0,1,0,1,...) = (1, 1, 2, 3, 5, 8, ...) is equivalent to: The numbers of compositions using parts 1 and 2 is equivalent to the numbers of compositions using parts == 1 (mod 2) (i.e., the odd integers). Generally, the numbers of compositions using parts 1 and k is equivalent to the numbers of compositions of (n+1) using parts 1 mod k. Cf. A000930 for k = 3 and A003269 for k = 4. Example: for k = 2, n = 4 we have the compositions (22; 211, 121; 112; 1111) = 5; but using parts 1 and 3 we have for n = 5: (311, 131, 113, 11111, 5) = 5. - Gary W. Adamson, Jul 05 2012
The sequence F(n) is the binomial transformation of the alternating sequence (-1)^(n-1)*F(n), whereas the sequence F(n+1) is the binomial transformation of the alternating sequence (-1)^n*F(n-1). Both of these facts follow easily from the equalities a(n;1)=F(n+1) and b(n;1)=F(n) where a(n;d) and b(n;d) are so-called "delta-Fibonacci" numbers as defined in comments to A014445 (see also the papers of Witula et al.). - Roman Witula, Jul 24 2012
F(n) is the number of different (n-1)-digit binary numbers such that all substrings of length > 1 have at least one digit equal to 1. Example: for n = 5 there are 8 binary numbers with n - 1 = 4 digits (1000, 1001, 1010, 1011, 1100, 1101, 1110, 1111), only the F(n) = 5 numbers 1010, 1011, 1101, 1110 and 1111 have the desired property. - Hieronymus Fischer, Nov 30 2012
For positive n, F(n+1) equals the determinant of the n X n tridiagonal matrix with 1's along the main diagonal, i's along the superdiagonal and along the subdiagonal where i = sqrt(-1). Example: Det([1,i,0,0; i,1,i,0; 0,i,1,i; 0,0,i,1]) = F(4+1) = 5. - Philippe Deléham, Feb 24 2013
For n >= 1, number of compositions of n where there is a drop between every second pair of parts, starting with the first and second part; see example. Also, a(n+1) is the number of compositions where there is a drop between every second pair of parts, starting with the second and third part; see example. - Joerg Arndt, May 21 2013 [see the Hopkins/Tangboonduangjit reference for a proof, see also the Checa reference for alternative proofs and statistics]
Central terms of triangles in A162741 and A208245, n > 0. - Reinhard Zumkeller, Jul 28 2013
For n >= 4, F(n-1) is the number of simple permutations in the geometric grid class given in A226433. - Jay Pantone, Sep 08 2013
a(n) are the pentagon (not pentagonal) numbers because the algebraic degree 2 number rho(5) = 2*cos(Pi/5) = phi (golden section), the length ratio diagonal/side in a pentagon, has minimal polynomial C(5,x) = x^2 - x - 1 (see A187360, n=5), hence rho(5)^n = a(n-1)*1 + a(n)*rho(5), n >= 0, in the power basis of the algebraic number field Q(rho(5)). One needs a(-1) = 1 here. See also the P. Steinbach reference under A049310. - Wolfdieter Lang, Oct 01 2013
A010056(a(n)) = 1. - Reinhard Zumkeller, Oct 10 2013
Define F(-n) to be F(n) for n odd and -F(n) for n even. Then for all n and k, F(n+2k)^2 - F(n)^2 = F(n+k)*( F(n+3k) - F(n-k) ). - Charlie Marion, Dec 20 2013
( F(n), F(n+2k) ) satisfies the Diophantine equation: X^2 + Y^2 - L(2k)*X*Y = F(4k)^2*(-1)^n. This generalizes Bouhamida's comments dated Sep 06 2009 and Sep 08 2009. - Charlie Marion, Jan 07 2014
For any prime p there is an infinite periodic subsequence within F(n) divisible by p, that begins at index n = 0 with value 0, and its first nonzero term at n = A001602(i), and period k = A001602(i). Also see A236479. - Richard R. Forberg, Jan 26 2014
Range of row n of the circular Pascal array of order 5. - Shaun V. Ault, May 30 2014 [orig. Kicey-Klimko 2011, and observations by Glen Whitehead; more general work found in Ault-Kicey 2014]
Nonnegative range of the quintic polynomial 2*y - y^5 + 2*x*y^4 + x^2*y^3 - 2*x^3*y^2 - x^4*y with x, y >= 0, see Jones 1975. - Charles R Greathouse IV, Jun 01 2014
The expression round(1/(F(k+1)/F(n) + F(k)/F(n+1))), for n > 0, yields a Fibonacci sequence with k-1 leading zeros (with rounding 0.5 to 0). - Richard R. Forberg, Aug 04 2014
Conjecture: For n > 0, F(n) is the number of all admissible residue classes for which specific finite subsequences of the Collatz 3n + 1 function consists of n+2 terms. This has been verified for 0 < n < 51. For details see Links. - Mike Winkler, Oct 03 2014
a(4)=3 and a(6)=8 are the only Fibonacci numbers that are of the form prime+1. - Emmanuel Vantieghem, Oct 02 2014
a(1)=1=a(2), a(3)=2 are the only Fibonacci numbers that are of the form prime-1. - Emmanuel Vantieghem, Jun 07 2015
Any consecutive pair (m, k) of the Fibonacci sequence a(n) illustrates a fair equivalence between m miles and k kilometers. For instance, 8 miles ~ 13 km; 13 miles ~ 21 km. - Lekraj Beedassy, Oct 06 2014
a(n+1) counts closed walks on K_2, containing one loop on the other vertex. Equivalently the (1,1)entry of A^(n+1) where the adjacency matrix of digraph is A=(0,1; 1,1). - _David Neil McGrath, Oct 29 2014
a(n-1) counts closed walks on the graph G(1-vertex;l-loop,2-loop). - David Neil McGrath, Nov 26 2014
From Tom Copeland, Nov 02 2014: (Start)
Let P(x) = x/(1+x) with comp. inverse Pinv(x) = x/(1-x) = -P[-x], and C(x) = [1-sqrt(1-4x)]/2, an o.g.f. for the shifted Catalan numbers A000108, with inverse Cinv(x) = x * (1-x).
Fin(x) = P[C(x)] = C(x)/[1 + C(x)] is an o.g.f. for the Fine numbers, A000957 with inverse Fin^(-1)(x) = Cinv[Pinv(x)] = Cinv[-P(-x)].
Mot(x) = C[P(x)] = C[-Pinv(-x)] gives an o.g.f. for shifted A005043, the Motzkin or Riordan numbers with comp. inverse Mot^(-1)(x) = Pinv[Cinv(x)] = (x - x^2) / (1 - x + x^2) (cf. A057078).
BTC(x) = C[Pinv(x)] gives A007317, a binomial transform of the Catalan numbers, with BTC^(-1)(x) = P[Cinv(x)].
Fib(x) = -Fin[Cinv(Cinv(-x))] = -P[Cinv(-x)] = x + 2 x^2 + 3 x^3 + 5 x^4 + ... = (x+x^2)/[1-x-x^2] is an o.g.f. for the shifted Fibonacci sequence A000045, so the comp. inverse is Fib^(-1)(x) = -C[Pinv(-x)] = -BTC(-x) and Fib(x) = -BTC^(-1)(-x).
Generalizing to P(x,t) = x /(1 + t*x) and Pinv(x,t) = x /(1 - t*x) = -P(-x,t) gives other relations to lattice paths, such as the o.g.f. for A091867, C[P[x,1-t]], and that for A104597, Pinv[Cinv(x),t+1].
(End)
F(n+1) equals the number of binary words of length n avoiding runs of zeros of odd lengths. - Milan Janjic, Jan 28 2015
From Russell Jay Hendel, Apr 12 2015: (Start)
We prove Conjecture 1 of Rashid listed in the Formula section.
We use the following notation: F(n)=A000045(n), the Fibonacci numbers, and L(n) = A000032(n), the Lucas numbers. The fundamental Fibonacci-Lucas recursion asserts that G(n) = G(n-1) + G(n-2), with "L" or "F" replacing "G".
We need the following prerequisites which we label (A), (B), (C), (D). The prerequisites are formulas in the Koshy book listed in the References section. (A) F(m-1) + F(m+1) = L(m) (Koshy, p. 97, #32), (B) L(2m) + 2*(-1)^m = L(m)^2 (Koshy p. 97, #41), (C) F(m+k)*F(m-k) = (-1)^n*F(k)^2 (Koshy, p. 113, #24, Tagiuri's identity), and (D) F(n)^2 + F(n+1)^2 = F(2n+1) (Koshy, p. 97, #30).
We must also prove (E), L(n+2)*F(n-1) = F(2n+1)+2*(-1)^n. To prove (E), first note that by (A), proof of (E) is equivalent to proving that F(n+1)*F(n-1) + F(n+3)*F(n-1) = F(2n+1) + 2*(-1)^n. But by (C) with k=1, we have F(n+1)*F(n-1) = F(n)^2 + (-1)^n. Applying (C) again with k=2 and m=n+1, we have F(n+3)*F(n-1) = F(n+1) + (-1)^n. Adding these two applications of (C) together and using (D) we have F(n+1)*F(n-1) + F(n+3)*F(n-1) = F(n)^2 + F(n+1)^2 + 2*(-1)^n = F(2n+1) + 2(-1)^n, completing the proof of (E).
We now prove Conjecture 1. By (A) and the Fibonacci-Lucas recursion, we have F(2n+1) + F(2n+2) + F(2n+3) + F(2n+4) = (F(2n+1) + F(2n+3)) + (F(2n+2) + F(2n+4)) = L(2n+2) +L(2n+3) = L(2n+4). But then by (B), with m=2n+4, we have sqrt(L(2n+4) + 2(-1)^n) = L(n+2). Finally by (E), we have L(n+2)*F(n-1) = F(2n+1) + 2*(-1)^n. Dividing both sides by F(n-1), we have (F(2n+1) + 2*(-1)^n)/F(n-1) = L(n+2) = sqrt(F(2n+1) + F(2n+2) + F(2n+3) + F(2n+4) + 2(-1)^n), as required.
(End)
In Fibonacci's Liber Abaci the rabbit problem appears in the translation of L. E. Sigler on pp. 404-405, and a remark [27] on p. 637. - Wolfdieter Lang, Apr 17 2015
a(n) counts partially ordered partitions of (n-1) into parts 1,2,3 where only the order of adjacent 1's and 2's are unimportant. (See example.) - David Neil McGrath, Jul 27 2015
F(n) divides F(n*k). Proved by Marjorie Bicknell and Verner E Hoggatt Jr. - Juhani Heino, Aug 24 2015
F(n) is the number of UDU-equivalence classes of ballot paths of length n. Two ballot paths of length n with steps U = (1,1), D = (1,-1) are UDU-equivalent whenever the positions of UDU are the same in both paths. - Kostas Manes, Aug 25 2015
Cassini's identity F(2n+1) * F(2n+3) = F(2n+2)^2 + 1 is the basis for a geometrical paradox (or dissection fallacy) in A262342. - Jonathan Sondow, Oct 23 2015
For n >= 4, F(n) is the number of up-down words on alphabet {1,2,3} of length n-2. - Ran Pan, Nov 23 2015
F(n+2) is the number of terms in p(n), where p(n)/q(n) is the n-th convergent of the formal infinite continued fraction [a(0),a(1),...]; e.g., p(3) = a(0)a(1)a(2)a(3) + a(0)a(1) + a(0)a(3) + a(2)a(3) + 1 has F(5) terms. Also, F(n+1) is the number of terms in q(n). - Clark Kimberling, Dec 23 2015
F(n+1) (for n >= 1) is the permanent of an n X n matrix M with M(i,j)=1 if |i-j| <= 1 and 0 otherwise. - Dmitry Efimov, Jan 08 2016
A trapezoid has three sides of lengths in order F(n), F(n+2), F(n). For increasing n a very close approximation to the maximum area will have the fourth side equal to 2*F(n+1). For a trapezoid with lengths of sides in order F(n+2), F(n), F(n+2), the fourth side will be F(n+3). - J. M. Bergot, Mar 17 2016
(1) Join two triangles with lengths of sides L(n), F(n+3), L(n+2) and F(n+2), L(n+1), L(n+2) (where L(n)=A000032(n)) along the common side of length L(n+2) to create an irregular quadrilateral. Its area is approximately 5*F(2*n-1) - (F(2*n-7) - F(2*n-13))/5. (2) Join two triangles with lengths of sides L(n), F(n+2), F(n+3) and L(n+1), F(n+1), F(n+3) along the common side F(n+3) to form an irregular quadrilateral. Its area is approximately 4*F(2*n-1) - 2*(F(2*n-7) + F(2*n-18)). - J. M. Bergot, Apr 06 2016
From Clark Kimberling, Jun 13 2016: (Start)
Let T* be the infinite tree with root 0 generated by these rules: if p is in T*, then p+1 is in T* and x*p is in T*.
Let g(n) be the set of nodes in the n-th generation, so that g(0) = {0}, g(1) = {1}, g(2) = {2, x}, g(3) = {3, 2x, x+1, x^2}, etc.
Let T(r) be the tree obtained by substituting r for x.
If a positive integer N is not a square and r = sqrt(N), then the number of (not necessarily distinct) integers in g(n) is A000045(n), for n >= 1. See A274142. (End)
Consider the partitions of n, with all summands initially listed in nonincreasing order. Freeze all the 1's in place and then allow all the other summands to change their order, without displacing any of the 1's. The resulting number of arrangements is a(n+1). - Gregory L. Simay, Jun 14 2016
Limit of the matrix power M^k shown in A163733, Sep 14 2016, as k->infinity results in a single column vector equal to the Fibonacci sequence. - Gary W. Adamson, Sep 19 2016
F(n) and Lucas numbers L(n), being related by the formulas F(n) = (F(n-1) + L(n-1))/2 and L(n) = 2 F(n+1) - F(n), are a typical pair of "autosequences" (see the link to OEIS Wiki). - Jean-François Alcover, Jun 10 2017
Also the number of independent vertex sets and vertex covers in the (n-2)-path graph. - Eric W. Weisstein, Sep 22 2017
Shifted numbers of {UD, DU, FD, DF}-equivalence classes of Łukasiewicz paths. Łukasiewicz paths are P-equivalent iff the positions of pattern P are identical in these paths. - Sergey Kirgizov, Apr 08 2018
For n > 0, F(n) = the number of Markov equivalence classes with skeleton the path on n nodes. See Theorem 2.1 in the article by A. Radhakrishnan et al. below. - Liam Solus, Aug 23 2018
For n >= 2, also: number of terms in A032858 (every other base-3 digit is strictly smaller than its neighbors) with n-2 digits in base 3. - M. F. Hasler, Oct 05 2018
F(n+1) is the number of fixed points of the Foata transformation on S_n. - Kevin Long, Oct 17 2018
F(n+2) is the dimension of the Hecke algebra of type A_n with independent parameters (0,1,0,1,...) or (1,0,1,0,...). See Corollary 1.5 in the link "Hecke algebras with independent parameters". - Jia Huang, Jan 20 2019
The sequence is the second INVERT transform of (1, -1, 2, -3, 5, -8, 13, ...) and is the first sequence in an infinite set of successive INVERT transforms generated from (1, 0, 1, 0, 1, ...). Refer to the array shown in A073133. - Gary W. Adamson, Jul 16 2019
From Kai Wang, Dec 16 2019: (Start)
F(n*k)/F(k) = Sum_{i=0..n-1; j=0..n-1; i+2*j=n-1} (-1)^(j*(k-1))*L(k)^i*((i+j)!/(i!*j!)).
F((2*m+1)*k)/F(k) = Sum_{i=0..m-1} (-1)^(i*k)*L((2*m-2*i)*k) + (-1)^(m*k).
F(2*m*k)/F(k) = Sum_{i=0..m-1} (-1)^(i*k)*L((2*m-2*i-1)*k).
F(m+s)*F(n+r) - F(m+r)*F(n+s) = (-1)^(n+s)*F(m-n)*F(r-s).
F(m+r)*F(n+s) + F(m+s)*F(n+r) = (2*L(m+n+r+s) - (-1)^(n+s)*L(m-n)*L(r-s))/5.
L(m+r)*L(n+s) - 5*F(m+s)*F(n+r) = (-1)^(n+s)*L(m-n)*L(r-s).
L(m+r)*L(n+s) + 5*F(m+s)*F(n+r) = 2*L(m+n+r+s) + (-1)^(n+s)*5*F(m-n)*F(r-s).
L(m+r)*L(n+s) - L(m+s)*L(n+r) = (-1)^(n+s)*5*F(m-n)*F(r-s). (End)
F(n+1) is the number of permutations in S_n whose principal order ideals in the weak order are Boolean lattices. - Bridget Tenner, Jan 16 2020
F(n+1) is the number of permutations w in S_n that form Boolean intervals [s, w] in the weak order for every simple reflection s in the support of w. - Bridget Tenner, Jan 16 2020
F(n+1) is the number of subsets of {1,2,.,.,n} in which all differences between successive elements of subsets are odd. For example, for n = 6, F(7) = 13 and the 13 subsets are {6}, {1,6}, {3,6}, {5,6}, {2,3,6}, {2,5,6}, {4,5,6}, {1,2,3,6}, {1,2,5,6}, {1,4,5,6}, {3,4,5,6}, {2,3,4,5,6}, {1,2,3,4,5,6}. For even differences between elements see Comment in A016116. - Enrique Navarrete, Jul 01 2020
F(n) is the number of subsets of {1,2,...,n} in which the smallest element of the subset equals the size of the subset (this type of subset is sometimes called extraordinary). For example, F(6) = 8 and the subsets are {1}, {2,3}, {2,4}, {2,5}, {3,4,5}, {2,6}, {3,4,6}, {3,5,6}. It is easy to see that these subsets follow the Fibonacci recursion F(n) = F(n-1) + F(n-2) since we get F(n) such subsets by keeping all F(n-1) subsets from the previous stage (in the example, the F(5)=5 subsets that don't include 6), and by adding one to all elements and appending an additional element n to each subset in F(n-2) subsets (in the example, by applying this to the F(4)=3 subsets {1}, {2,3}, {2,4} we obtain {2,6}, {3,4,6}, {3,5,6}). - Enrique Navarrete, Sep 28 2020
Named "série de Fibonacci" by Lucas (1877) after the Italian mathematician Fibonacci (Leonardo Bonacci, c. 1170 - c. 1240/50). In 1876 he named the sequence "série de Lamé" after the French mathematician Gabriel Lamé (1795 - 1870). - Amiram Eldar, Apr 16 2021
F(n) is the number of edge coverings of the path with n edges. - M. Farrokhi D. G., Sep 30 2021
LCM(F(m), F(n)) is a Fibonacci number if and only if either F(m) divides F(n) or F(n) divides F(m). - M. Farrokhi D. G., Sep 30 2021
Every nonunit positive rational number has at most one representation as the quotient of two Fibonacci numbers. - M. Farrokhi D. G., Sep 30 2021
The infinite sum F(n)/10^(n-1) for all natural numbers n is equal to 100/89. More generally, the sum of F(n)/(k^(n-1)) for all natural numbers n is equal to k^2/(k^2-k-1). Jonatan Djurachkovitch, Dec 31 2023
For n >= 1, number of compositions (c(1),c(2),...,c(k)) of n where c(1), c(3), c(5), ... are 1. To obtain such compositions K(n) of length n increase all parts c(2) by one in all of K(n-1) and prepend two parts 1 in all of K(n-2). - Joerg Arndt, Jan 05 2024
Cohn (1964) proved that a(12) = 12^2 is the only square in the sequence greater than a(1) = 1. - M. F. Hasler, Dec 18 2024
Product_{i=n-2..n+2} F(i) = F(n)^5 - F(n). For example, (F(4)F(5)F(6)F(7)F(8))=(3 * 5 * 8 * 13 * 21) = 8^5 - 8. - Jules Beauchamp, Apr 28 2025
F(n) is even iff n is a multiple of 3. - Stefano Spezia, Jul 06 2025

Examples

			For x = 0,1,2,3,4, x=1/(x+1) = 1, 1/2, 2/3, 3/5, 5/8. These fractions have numerators 1,1,2,3,5, which are the 2nd to 6th terms of the sequence. - _Cino Hilliard_, Sep 15 2008
From _Joerg Arndt_, May 21 2013: (Start)
There are a(7)=13 compositions of 7 where there is a drop between every second pair of parts, starting with the first and second part:
01:  [ 2 1 2 1 1 ]
02:  [ 2 1 3 1 ]
03:  [ 2 1 4 ]
04:  [ 3 1 2 1 ]
05:  [ 3 1 3 ]
06:  [ 3 2 2 ]
07:  [ 4 1 2 ]
08:  [ 4 2 1 ]
09:  [ 4 3 ]
10:  [ 5 1 1 ]
11:  [ 5 2 ]
12:  [ 6 1 ]
13:  [ 7 ]
There are abs(a(6+1))=13 compositions of 6 where there is no rise between every second pair of parts, starting with the second and third part:
01:  [ 1 2 1 2 ]
02:  [ 1 3 1 1 ]
03:  [ 1 3 2 ]
04:  [ 1 4 1 ]
05:  [ 1 5 ]
06:  [ 2 2 1 1 ]
07:  [ 2 3 1 ]
08:  [ 2 4 ]
09:  [ 3 2 1 ]
10:  [ 3 3 ]
11:  [ 4 2 ]
12:  [ 5 1 ]
13:  [ 6 ]
(End)
Partially ordered partitions of (n-1) into parts 1,2,3 where only the order of the adjacent 1's and 2's are unimportant. E.g., a(8)=21. These are (331),(313),(133),(322),(232),(223),(3211),(2311),(1321),(2131),(1132),(2113),(31111),(13111),(11311),(11131),(11113),(2221),(22111),(211111),(1111111). - _David Neil McGrath_, Jul 25 2015
Consider the partitions of 7 with summands initially listed in nonincreasing order. Keep the 1's frozen in position (indicated by "[]") and then allow the other summands to otherwise vary their order: 7; 6,[1]; 5,2; 2,5; 4,3; 3,4; 5,[1,1], 4,2,[1]; 2,4,[1]; 3,3,[1]; 3,3,2; 3,2,3; 2,3,3; 4,[1,1,1]; 3,2,[1,1]; 2,3,[1,1]; 2,2,2,[1]; 3,[1,1,1,1]; 2,2,[1,1,1]; 2,[1,1,1,1,1]; [1,1,1,1,1,1,1]. There are 21 = a(7+1) arrangements in all. - _Gregory L. Simay_, Jun 14 2016
		

References

  • Mohammad K. Azarian, The Generating Function for the Fibonacci Sequence, Missouri Journal of Mathematical Sciences, Vol. 2, No. 2, Spring 1990, pp. 78-79. Zentralblatt MATH, Zbl 1097.11516.
  • Mohammad K. Azarian, A Generalization of the Climbing Stairs Problem II, Missouri Journal of Mathematical Sciences, Vol. 16, No. 1, Winter 2004, pp. 12-17.
  • P. Bachmann, Niedere Zahlentheorie (1902, 1910), reprinted Chelsea, NY, 1968, vol. 2, p. 70.
  • R. B. Banks, Slicing Pizzas, Racing Turtles and Further Adventures in Applied Mathematics, Princeton Univ. Press, 1999. See p. 84.
  • A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, id. 4.
  • Marjorie Bicknell and Verner E Hoggatt, Fibonacci's Problem Book, Fibonacci Association, San Jose, Calif., 1974.
  • Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, pages 24 (Ex. 18), 489, 541.
  • A. Cayley, Theorems in Trigonometry and on Partitions, Messenger of Mathematics, 5 (1876), pp. 164, 188 = Mathematical Papers Vol. 10, n. 634, p. 16.
  • John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See pp. 84, 111-124, 202-203.
  • B. A. Davey and H. A. Priestley, Introduction to Lattices and Order (2nd edition), CUP, 2002. (See Exercise 1.15.)
  • B. Davis, 'The law of first digits' in 'Science Today' (subsequently renamed '2001') March 1980 p. 55, Times of India, Mumbai.
  • S. R. Finch, Mathematical Constants, Cambridge, 2003, Section 1.2.
  • R. P. Grimaldi, Compositions without the summand 1, Proceedings Thirty-second Southeastern International Conference on Combinatorics, Graph Theory and Computing (Baton Rouge, LA, 2001). Congr. Numer. 152 (2001), 33-43.
  • Jan Gullberg, Mathematics from the Birth of Numbers, W. W. Norton & Co., NY & London, 1997, §8.5 The Fibonacci and Related Sequences, pp. 286-288.
  • H. Halberstam and K. F. Roth, Sequences, Oxford, 1966; see Appendix.
  • S. Happersett, "Mathematical meditations", Journal of Mathematics and the Arts, 1 (2007), 29 - 33.
  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers. 3rd ed., Oxford Univ. Press, 1954; see esp. p. 148.
  • V. E. Hoggatt, Jr., Fibonacci and Lucas Numbers. Houghton, Boston, MA, 1969.
  • E. Horowitz and S. Sahni, Fundamentals of Data Structures, Computer Science Press, 1976; p. 338.
  • M. Kauers and P. Paule, The Concrete Tetrahedron, Springer 2011, p. 63.
  • C. Kicey and K. Klimko, Some geometry of Pascal's triangle, Pi Mu Epsilon Journal, 13(4):229-245 (2011).
  • D. E. Knuth, The Art of Computer Programming. Addison-Wesley, Reading, MA, Vol. 1, p. 78; Vol. 3, Section 6.2.1.
  • Thomas Koshy, "Fibonacci and Lucas Numbers with Applications", John Wiley and Sons, 2001.
  • Leonardo of Pisa [Leonardo Pisano], Liber Abaci [The Book of Calculation], 1202.
  • D. Litchfield, D. Goldenheim and C. H. Dietrich, Euclid, Fibonacci and Sketchpad, Math. Teacher, 90 (1997).
  • Lukovits et al., Nanotubes: Number of Kekulé structures and aromaticity, J. Chem. Inf. Comput. Sci, (2003), vol. 43, 609-614. See eq. 2 on page 610.
  • I. Lukovits and D. Janezic, "Enumeration of conjugated circuits in nanotubes", J. Chem. Inf. Comput. Sci., vol. 44, 410-414 (2004). See Table 1, second column.
  • B. Malesevic: Some combinatorial aspects of differential operation composition on the space R^n, Univ. Beograd, Publ. Elektrotehn. Fak., Ser. Mat. 9 (1998), 29-33.
  • G. Mantel, Resten van wederkeerige Reeksen, Nieuw Archief v. Wiskunde, 2nd series, I (1894), 172-184.
  • C. N. Menhinick, The Fibonacci Resonance and other new Golden Ratio discoveries, Onperson, (2015), pages 200-206.
  • S. Mneimneh, Fibonacci in The Curriculum: Not Just a Bad Recurrence, in Proceeding SIGCSE '15 Proceedings of the 46th ACM Technical Symposium on Computer Science Education, Pages 253-258.
  • Hilary I. Okagbue, Muminu O. Adamu, Sheila A. Bishop, Abiodun A. Opanuga, Digit and Iterative Digit Sum of Fibonacci numbers, their identities and powers, International Journal of Applied Engineering Research ISSN 0973-4562 Volume 11, Number 6 (2016) pp 4623-4627.
  • Clifford A. Pickover, A Passion for Mathematics, Wiley, 2005; see p. 49.
  • Clifford A. Pickover, The Math Book, From Pythagoras to the 57th Dimension, 250 Milestones in the History of Mathematics, Sterling Publ., NY, 2009, page 274.
  • Alfred S. Posamentier, Math Charmers, Tantalizing Tidbits for the Mind, Prometheus Books, NY, 2003, pages 55-58, 255-260.
  • Alfred S. Posamentier and I. Lehmann, The Fabulous Fibonacci Numbers, Prometheus Books, Amherst, NY 2007.
  • Paulo Ribenboim, The New Book of Prime Number Records, Springer, 1996.
  • Paulo Ribenboim, My Numbers, My Friends: Popular Lectures on Number Theory, Springer-Verlag, NY, 2000, p. 3.
  • Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See pp. 45, 59.
  • J. Riordan, An Introduction to Combinatorial Analysis, Princeton University Press, Princeton, NJ, 1978.
  • A. M. Robert, A Course in p-adic Analysis, Springer-Verlag, 2000; p. 213.
  • J. Roberts, Lure of the Integers, Math. Assoc. America, 1992, p. 288.
  • Manfred R. Schroeder, "Number Theory in Science and Communication", 5th ed., Springer-Verlag, 2009
  • L. E. Sigler, Fibonacci's Liber Abaci, Springer, 2003, pp. 404-405 and [26] on p. 627.
  • Simson, [No first name given], An explanation of an obscure passage in Albert Girard's Commentary ..., Phil. Trans. Royal Soc., 10 (1753), 430-433.
  • Parmanand Singh, The so-called fibonacci numbers in ancient and medieval India, Historia Mathematica, vol. 12 (1985), 229-244.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, pages 26-30.
  • S. Vajda, Fibonacci and Lucas numbers and the Golden Section, Ellis Horwood Ltd., Chichester, 1989.
  • N. N. Vorob'ev, Chisla fibonachchi [Russian], Moscow, 1951. English translation, Fibonacci Numbers, Blaisdell, New York and London, 1961.
  • N. N. Vorobiev, Fibonacci Numbers, Birkhauser (Basel; Boston) 2002.
  • D. Wells, The Penguin Dictionary of Curious and Interesting Numbers, pp. 61-67, Penguin Books 1987.
  • D. B. West, Combinatorial Mathematics, Cambridge, 2021, p. 53.
  • R. Witula, D. Slota, delta-Fibonacci Numbers, Appl. Anal. Discrete Math., 3 (2009), 310-329.

Crossrefs

First row of arrays A103323, A172236, A234357. Second row of arrays A099390, A048887, and A092921 (k-generalized Fibonacci numbers).
Cf. also A001175 (Pisano periods), A001177 (Entry points), A001176 (number of zeros in a fundamental period).
Fibonacci-Pascal triangles: A027926, A036355, A037027, A074829, A105809, A109906, A111006, A114197, A162741, A228074.
Fibonacci-Cayley triangle: A327992.
Boustrophedon transforms: A000738, A000744.
Numbers of prime factors: A022307 and A038575.
Cf. A061446 (primitive part of Fibonacci numbers), A000010 (comments on product formulas).
Number of digits of F(n): A020909 (base 2), A020911 (base 3), A020912 (base 4), A020913 (base 5), A060384 (base 10), A261585 (base 60).

Programs

  • Axiom
    [fibonacci(n) for n in 0..50]
    
  • GAP
    Fib:=[0,1];; for n in [3..10^3] do Fib[n]:=Fib[n-1]+Fib[n-2]; od; Fib; # Muniru A Asiru, Sep 03 2017
    
  • Haskell
    -- Based on code from http://www.haskell.org/haskellwiki/The_Fibonacci_sequence
    -- which also has other versions.
    fib :: Int -> Integer
    fib n = fibs !! n
        where
            fibs = 0 : 1 : zipWith (+) fibs (tail fibs)
    {- Example of use: map fib [0..38] Gerald McGarvey, Sep 29 2009 -}
    
  • Julia
    function fib(n)
       F = BigInt[1 1; 1 0]
       Fn = F^n
       Fn[2, 1]
    end
    println([fib(n) for n in 0:38]) # Peter Luschny, Feb 23 2017
    
  • Julia
    # faster
    function fibrec(n::Int)
        n == 0 && return (BigInt(0), BigInt(1))
        a, b = fibrec(div(n, 2))
        c = a * (b * 2 - a)
        d = a * a + b * b
        iseven(n) ? (c, d) : (d, c + d)
    end
    fibonacci(n::Int) = fibrec(n)[1]
    println([fibonacci(n) for n in 0:40]) # Peter Luschny, Apr 03 2022
    
  • Magma
    [Fibonacci(n): n in [0..38]];
    
  • Maple
    A000045 := proc(n) combinat[fibonacci](n); end;
    ZL:=[S, {a = Atom, b = Atom, S = Prod(X,Sequence(Prod(X,b))), X = Sequence(b,card >= 1)}, unlabelled]: seq(combstruct[count](ZL, size=n), n=0..38); # Zerinvary Lajos, Apr 04 2008
    spec := [B, {B=Sequence(Set(Z, card>1))}, unlabeled ]: seq(combstruct[count](spec, size=n), n=1..39); # Zerinvary Lajos, Apr 04 2008
    # The following Maple command isFib(n) yields true or false depending on whether n is a Fibonacci number or not.
    with(combinat): isFib := proc(n) local a: a := proc(n) local j: for j while fibonacci(j) <= n do fibonacci(j) end do: fibonacci(j-1) end proc: evalb(a(n) = n) end proc: # Emeric Deutsch, Nov 11 2014
  • Mathematica
    Table[Fibonacci[k], {k, 0, 50}] (* Mohammad K. Azarian, Jul 11 2015 *)
    Table[2^n Sqrt @ Product[(Cos[Pi k/(n + 1)]^2 + 1/4), {k, n}] // FullSimplify, {n, 15}]; (* Kasteleyn's formula specialized, Sarah-Marie Belcastro, Jul 04 2009 *)
    LinearRecurrence[{1, 1}, {0, 1}, 40] (* Harvey P. Dale, Aug 03 2014 *)
    Fibonacci[Range[0, 20]] (* Eric W. Weisstein, Sep 22 2017 *)
    CoefficientList[Series[-(x/(-1 + x + x^2)), {x, 0, 20}], x] (* Eric W. Weisstein, Sep 22 2017 *)
  • Maxima
    makelist(fib(n),n,0,100); /* Martin Ettl, Oct 21 2012 */
    
  • PARI
    a(n) = fibonacci(n)
    
  • PARI
    a(n) = imag(quadgen(5)^n)
    
  • PARI
    a(n)=my(phi=quadgen(5));(phi^n-(-1/phi)^n)/(2*phi-1) \\ Charles R Greathouse IV, Jun 17 2012
    
  • PARI
    is_A000045=A010056 \\ Characteristic function: see there. - M. F. Hasler, Feb 21 2025
    
  • Python
    # From Jaap Spies, Jan 05 2007, updated by Peter Luschny, Feb 21 2023:
    from itertools import islice
    def fib_gen():
        x, y = 0, 1
        while True:
            yield x
            x, y = y, x + y
    fib_list = lambda n: list(islice(fib_gen(), n))
    
  • Python
    is_A000045 = A010056 # See there: Characteristic function. Used e.g. in A377092.
    A000045 = lambda n: (4<M. F. Hasler, improving old code from 2023, Feb 20 2025
    
  • Python
    [(i:=-1)+(j:=1)] + [(j:=i+j)+(i:=j-i) for  in range(100)] # _Jwalin Bhatt, Apr 03 2025
    
  • Sage
    # Demonstration program from Jaap Spies:
    a = sloane.A000045; # choose sequence
    print(a)            # This returns the name of the sequence.
    print(a(38))        # This returns the 38th term of the sequence.
    print(a.list(39))   # This returns a list of the first 39 terms.
    
  • Sage
    a = BinaryRecurrenceSequence(1,1); print([a(n) for n in range(20)])
    # Closed form integer formula with F(1) = 0 from Paul Hankin (see link).
    F = lambda n: (4<<(n-1)*(n+2))//((4<<2*(n-1))-(2<<(n-1))-1)&((2<<(n-1))-1)
    print([F(n) for n in range(20)]) # Peter Luschny, Aug 28 2016
    
  • Sage
    print(list(fibonacci_sequence(0, 40))) # Bruno Berselli, Jun 26 2014
    
  • Scala
    def fibonacci(n: BigInt): BigInt = {
      val zero = BigInt(0)
      def fibTail(n: BigInt, a: BigInt, b: BigInt): BigInt = n match {
        case `zero` => a
        case _ => fibTail(n - 1, b, a + b)
      }
      fibTail(n, 0, 1)
    } // Based on "Case 3: Tail Recursion" from Carrasquel (2016) link
    (0 to 49).map(fibonacci()) // _Alonso del Arte, Apr 13 2019

Formula

G.f.: x / (1 - x - x^2).
G.f.: Sum_{n>=0} x^n * Product_{k=1..n} (k + x)/(1 + k*x). - Paul D. Hanna, Oct 26 2013
F(n) = ((1+sqrt(5))^n - (1-sqrt(5))^n)/(2^n*sqrt(5)).
Alternatively, F(n) = ((1/2+sqrt(5)/2)^n - (1/2-sqrt(5)/2)^n)/sqrt(5).
F(n) = F(n-1) + F(n-2) = -(-1)^n F(-n).
F(n) = round(phi^n/sqrt(5)).
F(n+1) = Sum_{j=0..floor(n/2)} binomial(n-j, j).
A strong divisibility sequence, that is, gcd(a(n), a(m)) = a(gcd(n, m)) for all positive integers n and m. - Michael Somos, Jan 03 2017
E.g.f.: (2/sqrt(5))*exp(x/2)*sinh(sqrt(5)*x/2). - Len Smiley, Nov 30 2001
[0 1; 1 1]^n [0 1] = [F(n); F(n+1)]
x | F(n) ==> x | F(kn).
A sufficient condition for F(m) to be divisible by a prime p is (p - 1) divides m, if p == 1 or 4 (mod 5); (p + 1) divides m, if p == 2 or 3 (mod 5); or 5 divides m, if p = 5. (This is essentially Theorem 180 in Hardy and Wright.) - Fred W. Helenius (fredh(AT)ix.netcom.com), Jun 29 2001
a(n)=F(n) has the property: F(n)*F(m) + F(n+1)*F(m+1) = F(n+m+1). - Miklos Kristof, Nov 13 2003
From Kurmang. Aziz. Rashid, Feb 21 2004: (Start)
Conjecture 1: for n >= 2, sqrt(F(2n+1) + F(2n+2) + F(2n+3) + F(2n+4) + 2*(-1)^n) = (F(2n+1) + 2*(-1)^n)/F(n-1). [For a proof see Comments section.]
Conjecture 2: for n >= 0, (F(n+2)*F(n+3)) - (F(n+1)*F(n+4)) + (-1)^n = 0.
[Two more conjectures removed by Peter Luschny, Nov 17 2017]
Theorem 1: for n >= 0, (F(n+3)^ 2 - F(n+1)^ 2)/F(n+2) = (F(n+3)+ F(n+1)).
Theorem 2: for n >= 0, F(n+10) = 11*F(n+5) + F(n).
Theorem 3: for n >= 6, F(n) = 4*F(n-3) + F(n-6). (End)
Conjecture 2 of Rashid is actually a special case of the general law F(n)*F(m) + F(n+1)*F(m+1) = F(n+m+1) (take n <- n+1 and m <- -(n+4) in this law). - Harmel Nestra (harmel.nestra(AT)ut.ee), Apr 22 2005
Conjecture 2 of Rashid Kurmang simplified: F(n)*F(n+3) = F(n+1)*F(n+2)-(-1)^n. Follows from d'Ocagne's identity: m=n+2. - Alex Ratushnyak, May 06 2012
Conjecture: for all c such that 2-phi <= c < 2*(2-phi) we have F(n) = floor(phi*a(n-1)+c) for n > 2. - Gerald McGarvey, Jul 21 2004
For x > phi, Sum_{n>=0} F(n)/x^n = x/(x^2 - x - 1). - Gerald McGarvey, Oct 27 2004
F(n+1) = exponent of the n-th term in the series f(x, 1) determined by the equation f(x, y) = xy + f(xy, x). - Jonathan Sondow, Dec 19 2004
a(n-1) = Sum_{k=0..n} (-1)^k*binomial(n-ceiling(k/2), floor(k/2)). - Benoit Cloitre, May 05 2005
a(n) = Sum_{k=0..n} abs(A108299(n, k)). - Reinhard Zumkeller, Jun 01 2005
a(n) = A001222(A000304(n)).
F(n+1) = Sum_{k=0..n} binomial((n+k)/2, (n-k)/2)(1+(-1)^(n-k))/2. - Paul Barry, Aug 28 2005
Fibonacci(n) = Product_{j=1..ceiling(n/2)-1} (1 + 4(cos(j*Pi/n))^2). [Bicknell and Hoggatt, pp. 47-48.] - Emeric Deutsch, Oct 15 2006
F(n) = 2^-(n-1)*Sum_{k=0..floor((n-1)/2)} binomial(n,2*k+1)*5^k. - Hieronymus Fischer, Feb 07 2006
a(n) = (b(n+1) + b(n-1))/n where {b(n)} is the sequence A001629. - Sergio Falcon, Nov 22 2006
F(n*m) = Sum_{k = 0..m} binomial(m,k)*F(n-1)^k*F(n)^(m-k)*F(m-k). The generating function of F(n*m) (n fixed, m = 0,1,2,...) is G(x) = F(n)*x / ((1 - F(n-1)*x)^2 - F(n)*x*(1 - F(n-1)*x) - (F(n)*x)^2). E.g., F(15) = 610 = F(5*3) = binomial(3,0)* F(4)^0*F(5)^3*F(3) + binomial(3,1)* F(4)^1*F(5)^2*F(2) + binomial(3,2)* F(4)^2*F(5)^1*F(1) + binomial(3,3)* F(4)^3*F(5)^0*F(0) = 1*1*125*2 + 3*3*25*1 + 3*9*5*1 + 1*27*1*0 = 250 + 225 + 135 + 0 = 610. - Miklos Kristof, Feb 12 2007
From Miklos Kristof, Mar 19 2007: (Start)
Let L(n) = A000032(n) = Lucas numbers. Then:
For a >= b and odd b, F(a+b) + F(a-b) = L(a)*F(b).
For a >= b and even b, F(a+b) + F(a-b) = F(a)*L(b).
For a >= b and odd b, F(a+b) - F(a-b) = F(a)*L(b).
For a >= b and even b, F(a+b) - F(a-b) = L(a)*F(b).
F(n+m) + (-1)^m*F(n-m) = F(n)*L(m);
F(n+m) - (-1)^m*F(n-m) = L(n)*F(m);
F(n+m+k) + (-1)^k*F(n+m-k) + (-1)^m*(F(n-m+k) + (-1)^k*F(n-m-k)) = F(n)*L(m)*L(k);
F(n+m+k) - (-1)^k*F(n+m-k) + (-1)^m*(F(n-m+k) - (-1)^k*F(n-m-k)) = L(n)*L(m)*F(k);
F(n+m+k) + (-1)^k*F(n+m-k) - (-1)^m*(F(n-m+k) + (-1)^k*F(n-m-k)) = L(n)*F(m)*L(k);
F(n+m+k) - (-1)^k*F(n+m-k) - (-1)^m*(F(n-m+k) - (-1)^k*F(n-m-k)) = 5*F(n)*F(m)*F(k). (End)
A corollary to Kristof 2007 is 2*F(a+b) = F(a)*L(b) + L(a)*F(b). - Graeme McRae, Apr 24 2014
For n > m, the sum of the 2m consecutive Fibonacci numbers F(n-m-1) thru F(n+m-2) is F(n)*L(m) if m is odd, and L(n)*F(m) if m is even (see the McRae link). - Graeme McRae, Apr 24 2014.
F(n) = b(n) + (p-1)*Sum_{k=2..n-1} floor(b(k)/p)*F(n-k+1) where b(k) is the digital sum analog of the Fibonacci recurrence, defined by b(k) = ds_p(b(k-1)) + ds_p(b(k-2)), b(0)=0, b(1)=1, ds_p=digital sum base p. Example for base p=10: F(n) = A010077(n) + 9*Sum_{k=2..n-1} A059995(A010077(k))*F(n-k+1). - Hieronymus Fischer, Jul 01 2007
F(n) = b(n)+p*Sum_{k=2..n-1} floor(b(k)/p)*F(n-k+1) where b(k) is the digital product analog of the Fonacci recurrence, defined by b(k) = dp_p(b(k-1)) + dp_p(b(k-2)), b(0)=0, b(1)=1, dp_p=digital product base p. Example for base p=10: F(n) = A074867(n) + 10*Sum_{k=2..n-1} A059995(A074867(k))*F(n-k+1). - Hieronymus Fischer, Jul 01 2007
a(n) = denominator of continued fraction [1,1,1,...] (with n ones); e.g., 2/3 = continued fraction [1,1,1]; where barover[1] = [1,1,1,...] = 0.6180339.... - Gary W. Adamson, Nov 29 2007
F(n + 3) = 2F(n + 2) - F(n), F(n + 4) = 3F(n + 2) - F(n), F(n + 8) = 7F(n + 4) - F(n), F(n + 12) = 18F(n + 6) - F(n). - Paul Curtz, Feb 01 2008
a(2^n) = Product_{i=0..n-2} B(i) where B(i) is A001566. Example 3*7*47 = F(16). - Kenneth J Ramsey, Apr 23 2008
a(n+1) = Sum_{k=0..n} A109466(n,k)*(-1)^(n-k). -Philippe Deléham, Oct 26 2008
a(n) = Sum_{l_1=0..n+1} Sum_{l_2=0..n}...Sum_{l_i=0..n-i}... Sum_{l_n=0..1} delta(l_1,l_2,...,l_i,...,l_n), where delta(l_1,l_2,...,l_i,...,l_n) = 0 if any l_i + l_(i+1) >= 2 for i=1..n-1 and delta(l_1,l_2,...,l_i,...,l_n) = 1 otherwise. - Thomas Wieder, Feb 25 2009
a(n+1) = 2^n sqrt(Product_{k=1..n} cos(k Pi/(n+1))^2+1/4) (Kasteleyn's formula specialized). - Sarah-Marie Belcastro, Jul 04 2009
a(n+1) = Sum_{k=floor(n/2) mod 5} C(n,k) - Sum_{k=floor((n+5)/2) mod 5} C(n,k) = A173125(n) - A173126(n) = |A054877(n)-A052964(n-1)|. - Henry Bottomley, Feb 10 2010
If p[i] = modp(i,2) and if A is Hessenberg matrix of order n defined by: A[i,j] = p[j-i+1], (i <= j), A[i,j]=-1, (i=j+1), and A[i,j]=0 otherwise. Then, for n >= 1, a(n)=det A. - Milan Janjic, May 02 2010
Limit_{k->oo} F(k+n)/F(k) = (L(n) + F(n)*sqrt(5))/2 with the Lucas numbers L(n) = A000032(n). - Johannes W. Meijer, May 27 2010
For n >= 1, F(n) = round(log_2(2^(phi*F(n-1)) + 2^(phi*F(n-2)))), where phi is the golden ratio. - Vladimir Shevelev, Jun 24 2010, Jun 27 2010
For n >= 1, a(n+1) = ceiling(phi*a(n)), if n is even and a(n+1) = floor(phi*a(n)), if n is odd (phi = golden ratio). - Vladimir Shevelev, Jul 01 2010
a(n) = 2*a(n-2) + a(n-3), n > 2. - Gary Detlefs, Sep 08 2010
a(2^n) = Product_{i=0..n-1} A000032(2^i). - Vladimir Shevelev, Nov 28 2010
a(n)^2 - a(n-1)^2 = a(n+1)*a(n-2), see A121646.
a(n) = sqrt((-1)^k*(a(n+k)^2 - a(k)*a(2n+k))), for any k. - Gary Detlefs, Dec 03 2010
F(2*n) = F(n+2)^2 - F(n+1)^2 - 2*F(n)^2. - Richard R. Forberg, Jun 04 2011
From Artur Jasinski, Nov 17 2011: (Start)
(-1)^(n+1) = F(n)^2 + F(n)*F(1+n) - F(1+n)^2.
F(n) = F(n+2) - 1 + (F(n+1))^4 + 2*(F(n+1)^3*F(n+2)) - (F(n+1)*F(n+2))^2 - 2*F(n+1)(F(n+2))^3 + (F(n+2))^4 - F(n+1). (End)
F(n) = 1 + Sum_{x=1..n-2} F(x). - Joseph P. Shoulak, Feb 05 2012
F(n) = 4*F(n-2) - 2*F(n-3) - F(n-6). - Gary Detlefs, Apr 01 2012
F(n) = round(phi^(n+1)/(phi+2)). - Thomas Ordowski, Apr 20 2012
From Sergei N. Gladkovskii, Jun 03 2012: (Start)
G.f.: A(x) = x/(1-x-x^2) = G(0)/sqrt(5) where G(k) = 1 - ((-1)^k)*2^k/(a^k - b*x*a^k*2^k/(b*x*2^k - 2*((-1)^k)*c^k/G(k+1))) and a=3+sqrt(5), b=1+sqrt(5), c=3-sqrt(5); (continued fraction, 3rd kind, 3-step).
Let E(x) be the e.g.f., i.e.,
E(x) = 1*x + (1/2)*x^2 + (1/3)*x^3 + (1/8)*x^4 + (1/24)*x^5 + (1/90)*x^6 + (13/5040)*x^7 + ...; then
E(x) = G(0)/sqrt(5); G(k) = 1 - ((-1)^k)*2^k/(a^k - b*x*a^k*2^k/(b*x*2^k - 2*((-1)^k)*(k+1)*c^k/G(k+1))), where a=3+sqrt(5), b=1+sqrt(5), c=3-sqrt(5); (continued fraction, 3rd kind, 3-step).
(End)
From Hieronymus Fischer, Nov 30 2012: (Start)
F(n) = 1 + Sum_{j_1=1..n-2} 1 + Sum_{j_1=1..n-2} Sum_{j_2=1..j_1-2} 1 + Sum_{j_1=1..n-2} Sum_{j_2=1..j_1-2} Sum_{j_3=1..j_2-2} 1 + ... + Sum_{j_1=1..n-2} Sum_{j_2=1..j_1-2} Sum_{j_3=1..j_2-2} ... Sum_{j_k=1..j_(k-1)-2} 1, where k = floor((n-1)/2).
Example: F(6) = 1 + Sum_{j=1..4} 1 + Sum_{j=1..4} Sum_{k=1..(j-2)} 1 + 0 = 1 + (1 + 1 + 1 + 1) + (1 + (1 + 1)) = 8.
F(n) = Sum_{j=0..k} S(j+1,n-2j), where k = floor((n-1)/2) and the S(j,n) are the n-th j-simplex sums: S(1,n) = 1 is the 1-simplex sum, S(2,n) = Sum_{k=1..n} S(1,k) = 1+1+...+1 = n is the 2-simplex sum, S(3,n) = Sum_{k=1..n} S(2,k) = 1+2+3+...+n is the 3-simplex sum (= triangular numbers = A000217), S(4,n) = Sum_{k=1..n} S(3,k) = 1+3+6+...+n(n+1)/2 is the 4-simplex sum (= tetrahedral numbers = A000292) and so on.
Since S(j,n) = binomial(n-2+j,j-1), the formula above equals the well-known binomial formula, essentially. (End)
G.f.: A(x) = x / (1 - x / (1 - x / (1 + x))). - Michael Somos, Jan 04 2013
Sum_{n >= 1} (-1)^(n-1)/(a(n)*a(n+1)) = 1/phi (phi=golden ratio). - Vladimir Shevelev, Feb 22 2013
From Raul Prisacariu, Oct 29 2023: (Start)
For odd k, Sum_{n >= 1} a(k)^2*(-1)^(n-1)/(a(k*n)*a(k*n+k)) = phi^(-k).
For even k, Sum_{n >= 1} a(k)^2/(a(k*n)*a(k*n+k)) = phi^(-k). (End)
From Vladimir Shevelev, Feb 24 2013: (Start)
(1) Expression a(n+1) via a(n): a(n+1) = (a(n) + sqrt(5*(a(n))^2 + 4*(-1)^n))/2;
(2) Sum_{k=1..n} (-1)^(k-1)/(a(k)*a(k+1)) = a(n)/a(n+1);
(3) a(n)/a(n+1) = 1/phi + r(n), where |r(n)| < 1/(a(n+1)*a(n+2)). (End)
F(n+1) = F(n)/2 + sqrt((-1)^n + 5*F(n)^2/4), n >= 0. F(n+1) = U_n(i/2)/i^n, (U:= Chebyshev polynomial of the 2nd kind, i=sqrt(-1)). - Bill Gosper, Mar 04 2013
G.f.: -Q(0) where Q(k) = 1 - (1+x)/(1 - x/(x - 1/Q(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Mar 06 2013
G.f.: x - 1 - 1/x + (1/x)/Q(0), where Q(k) = 1 - (k+1)*x/(1 - x/(x - (k+1)/Q(k+1))); (continued fraction). - Sergei N. Gladkovskii, Apr 23 2013
G.f.: x*G(0), where G(k) = 1 + x*(1+x)/(1 - x*(1+x)/(x*(1+x) + 1/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Jul 08 2013
G.f.: x^2 - 1 + 2*x^2/(W(0)-2), where W(k) = 1 + 1/(1 - x*(k + x)/( x*(k+1 + x) + 1/W(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Aug 28 2013
G.f.: Q(0) - 1, where Q(k) = 1 + x^2 + (k+2)*x - x*(k+1 + x)/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, Oct 06 2013
Let b(n) = b(n-1) + b(n-2), with b(0) = 0, b(1) = phi. Then, for n >= 2, F(n) = floor(b(n-1)) if n is even, F(n) = ceiling(b(n-1)), if n is odd, with convergence. - Richard R. Forberg, Jan 19 2014
a(n) = Sum_{t1*g(1)+t2*g(2)+...+tn*g(n)=n} multinomial(t1+t2+...+tn,t1,t2,...,tn), where g(k)=2*k-1. - Mircea Merca, Feb 27 2014
F(n) = round(sqrt(F(n-1)^2 + F(n)^2 + F(n+1)^2)/2), for n > 0. This rule appears to apply to any sequence of the form a(n) = a(n-1) + a(n-2), for any two values of a(0) and a(1), if n is sufficiently large. - Richard R. Forberg, Jul 27 2014
F(n) = round(2/(1/F(n) + 1/F(n+1) + 1/F(n+2))), for n > 0. This rule also appears to apply to any sequence of the form a(n) = a(n-1) + a(n-2), for any two values of a(0) and a(1), if n is sufficiently large. - Richard R. Forberg, Aug 03 2014
F(n) = round(1/(Sum_{j>=n+2} 1/F(j))). - Richard R. Forberg, Aug 14 2014
a(n) = hypergeometric([-n/2+1/2, -n/2+1], [-n+1], -4) for n >= 2. - Peter Luschny, Sep 19 2014
Limit_{n -> oo} (log F(n+1)/log F(n))^n = e. - Thomas Ordowski, Oct 06 2014
F(n) = (L(n+1)^2 - L(n-1)^2)/(5*L(n)), where L(n) is A000032(n), with a similar inverse relationship. - Richard R. Forberg, Nov 17 2014
Consider the graph G[1-vertex;1-loop,2-loop] in comment above. Construct the power matrix array T(n,j) = [A^*j]*[S^*(j-1)] where A=(1,1,0,...) and S=(0,1,0,...)(A063524). [* is convolution operation] Define S^*0=I with I=(1,0,...). Then T(n,j) counts n-walks containing (j) loops and a(n-1) = Sum_{j=1..n} T(n,j). - David Neil McGrath, Nov 21 2014
Define F(-n) to be F(n) for n odd and -F(n) for n even. Then for all n and k, F(n) = F(k)*F(n-k+3) - F(k-1)*F(n-k+2) - F(k-2)*F(n-k) + (-1)^k*F(n-2k+2). - Charlie Marion, Dec 04 2014
F(n+k)^2 - L(k)*F(n)*F(n+k) + (-1)^k*F(n)^2 = (-1)^n*F(k)^2, if L(k) = A000032(k). - Alexander Samokrutov, Jul 20 2015
F(2*n) = F(n+1)^2 - F(n-1)^2, similar to Koshy (D) and Forberg 2011, but different. - Hermann Stamm-Wilbrandt, Aug 12 2015
F(n+1) = ceiling( (1/phi)*Sum_{k=0..n} F(k) ). - Tom Edgar, Sep 10 2015
a(n) = (L(n-3) + L(n+3))/10 where L(n)=A000032(n). - J. M. Bergot, Nov 25 2015
From Bob Selcoe, Mar 27 2016: (Start)
F(n) = (F(2n+k+1) - F(n+1)*F(n+k+1))/F(n+k), k >= 0.
Thus when k=0: F(n) = sqrt(F(2n+1) - F(n+1)^2).
F(n) = (F(3n) - F(n+1)^3 + F(n-1)^3)^(1/3).
F(n+2k) = binomial transform of any subsequence starting with F(n). Example F(6)=8: 1*8 = F(6)=8; 1*8 + 1*13 = F(8)=21; 1*8 + 2*13 + 1*21 = F(10)=55; 1*8 + 3*13 + 3*21 + 1*34 = F(12)=144, etc. This formula applies to Fibonacci-type sequences with any two seed values for a(0) and a(1) (e.g., Lucas sequence A000032: a(0)=2, a(1)=1).
(End)
F(n) = L(k)*F(n-k) + (-1)^(k+1)*F(n-2k) for all k >= 0, where L(k) = A000032(k). - Anton Zakharov, Aug 02 2016
From Ilya Gutkovskiy, Aug 03 2016: (Start)
a(n) = F_n(1), where F_n(x) are the Fibonacci polynomials.
Inverse binomial transform of A001906.
Number of zeros in substitution system {0 -> 11, 1 -> 1010} at step n from initial string "1" (1 -> 1010 -> 101011101011 -> ...) multiplied by 1/A000079(n). (End)
For n >= 2, a(n) = 2^(n^2+n) - (4^n-2^n-1)*floor(2^(n^2+n)/(4^n-2^n-1)) - 2^n*floor(2^(n^2) - (2^n-1-1/2^n)*floor(2^(n^2+n)/(4^n-2^n-1))). - Benoit Cloitre, Apr 17 2017
f(n+1) = Sum_{j=0..floor(n/2)} Sum_{k=0..j} binomial(n-2j,k)*binomial(j,k). - Tony Foster III, Sep 04 2017
F(n) = Sum_{k=0..floor((n-1)/2)} ( (n-k-1)! / ((n-2k-1)! * k!) ). - Zhandos Mambetaliyev, Nov 08 2017
For x even, F(n) = (F(n+x) + F(n-x))/L(x). For x odd, F(n) = (F(n+x) - F(n-x))/L(x) where n >= x in both cases. Therefore F(n) = F(2*n)/L(n) for n >= 0. - David James Sycamore, May 04 2018
From Isaac Saffold, Jul 19 2018: (Start)
Let [a/p] denote the Legendre symbol. Then, for an odd prime p:
F(p+n) == [5/p]*F([5/p]+n) (mod p), if [5/p] = 1 or -1.
F(p+n) == 3*F(n) (mod p), if [5/p] = 0 (i.e., p = 5).
This is true for negative-indexed terms as well, if this sequence is extended by the negafibonacci numbers (i.e., F(-n) = A039834(n)). (End)
a(n) = A094718(4, n). a(n) = A101220(0, j, n).
a(n) = A090888(0, n+1) = A118654(0, n+1) = A118654(1, n-1) = A109754(0, n) = A109754(1, n-1), for n > 0.
a(n) = (L(n-3) + L(n-2) + L(n-1) + L(n))/5 with L(n)=A000032(n). - Art Baker, Jan 04 2019
F(n) = F(k-1)*F(abs(n-k-2)) + F(k-1)*F(n-k-1) + F(k)*F(abs(n-k-2)) + 2*F(k)*F(n-k-1), for n > k > 0. - Joseph M. Shunia, Aug 12 2019
F(n) = F(n-k+2)*F(k-1) + F(n-k+1)*F(k-2) for all k such that 2 <= k <= n. - Michael Tulskikh, Oct 09 2019
F(n)^2 - F(n+k)*F(n-k) = (-1)^(n+k) * F(k)^2 for 2 <= k <= n [Catalan's identity]. - Hermann Stamm-Wilbrandt, May 07 2021
Sum_{n>=1} 1/a(n) = A079586 is the reciprocal Fibonacci constant. - Gennady Eremin, Aug 06 2021
a(n) = Product_{d|n} b(d) = Product_{k=1..n} b(gcd(n,k))^(1/phi(n/gcd(n,k))) = Product_{k=1..n} b(n/gcd(n,k))^(1/phi(n/gcd(n,k))) where b(n) = A061446(n) = primitive part of a(n), phi(n) = A000010(n). - Richard L. Ollerton, Nov 08 2021
a(n) = 2*i^(1-n)*sin(n*arccos(i/2))/sqrt(5), i=sqrt(-1). - Bill Gosper, May 05 2022
a(n) = i^(n-1)*sin(n*c)/sin(c) = i^(n-1)*sin(c*n)*csc(c), where c = Pi/2 + i*arccsch(2). - Peter Luschny, May 23 2022
F(2n) = Sum_{k=1..n} (k/5)*binomial(2n, n+k), where (k/5) is the Legendre or Jacobi Symbol; F(2n+1)= Sum_{k=1..n} (-(k+2)/5)*binomial(2n+1, n+k), where (-(k+2)/5) is the Legendre or Jacobi Symbol. For example, F(10) = 1*binomial(10,6) - 1*binomial(10,7) - 1*binomial(10,8) + 1*binomial(10,9) + 0*binomial(10,10), F(11) = 1*binomial(11,6) - 1*binomial(11,7) + 0*binomial(11,8) - 1*binomial(11,9) + 1*binomial(11,10) + 1*binomial(11,11). - Yike Li, Aug 21 2022
For n > 0, 1/F(n) = Sum_{k>=1} F(n*k)/(F(n+2)^(k+1)). - Diego Rattaggi, Oct 26 2022
From Andrea Pinos, Dec 02 2022: (Start)
For n == 0 (mod 4): F(n) = F((n+2)/2)*( F(n/2) + F((n/2)-2) ) + 1;
For n == 1 (mod 4): F(n) = F((n-1)/2)*( F((n-1)/2) + F(2+(n-1)/2) ) + 1;
For n == 2 (mod 4): F(n) = F((n-2)/2)*( F(n/2) + F((n/2)+2) ) + 1;
For n == 3 (mod 4): F(n) = F((n-1)/2)*( F((n-1)/2) + F(2+(n-1)/2) ) - 1. (End)
F(n) = Sum_{i=0..n-1} F(i)^2 / F(n-1). - Jules Beauchamp, May 03 2025

A000129 Pell numbers: a(0) = 0, a(1) = 1; for n > 1, a(n) = 2*a(n-1) + a(n-2).

Original entry on oeis.org

0, 1, 2, 5, 12, 29, 70, 169, 408, 985, 2378, 5741, 13860, 33461, 80782, 195025, 470832, 1136689, 2744210, 6625109, 15994428, 38613965, 93222358, 225058681, 543339720, 1311738121, 3166815962, 7645370045, 18457556052, 44560482149, 107578520350, 259717522849
Offset: 0

Views

Author

Keywords

Comments

Sometimes also called lambda numbers.
Also denominators of continued fraction convergents to sqrt(2): 1, 3/2, 7/5, 17/12, 41/29, 99/70, 239/169, 577/408, 1393/985, 3363/2378, 8119/5741, 19601/13860, 47321/33461, 114243/80782, ... = A001333/A000129.
Number of lattice paths from (0,0) to the line x=n-1 consisting of U=(1,1), D=(1,-1) and H=(2,0) steps (i.e., left factors of Grand Schroeder paths); for example, a(3)=5, counting the paths H, UD, UU, DU and DD. - Emeric Deutsch, Oct 27 2002
a(2*n) with b(2*n) := A001333(2*n), n >= 1, give all (positive integer) solutions to Pell equation b^2 - 2*a^2 = +1 (see Emerson reference). a(2*n+1) with b(2*n+1) := A001333(2*n+1), n >= 0, give all (positive integer) solutions to Pell equation b^2 - 2*a^2 = -1.
Bisection: a(2*n+1) = T(2*n+1, sqrt(2))/sqrt(2) = A001653(n), n >= 0 and a(2*n) = 2*S(n-1,6) = 2*A001109(n), n >= 0, with T(n,x), resp. S(n,x), Chebyshev's polynomials of the first, resp. second kind. S(-1,x)=0. See A053120, resp. A049310. - Wolfdieter Lang, Jan 10 2003
Consider the mapping f(a/b) = (a + 2b)/(a + b). Taking a = b = 1 to start with and carrying out this mapping repeatedly on each new (reduced) rational number gives the following sequence 1/1, 3/2, 7/5, 17/12, 41/29, ... converging to 2^(1/2). Sequence contains the denominators. - Amarnath Murthy, Mar 22 2003
This is also the Horadam sequence (0,1,1,2). Limit_{n->oo} a(n)/a(n-1) = sqrt(2) + 1 = A014176. - Ross La Haye, Aug 18 2003
Number of 132-avoiding two-stack sortable permutations.
From Herbert Kociemba, Jun 02 2004: (Start)
For n > 0, the number of (s(0), s(1), ..., s(n)) such that 0 < s(i) < 4 and |s(i) - s(i-1)| <= 1 for i = 1,2,...,n, s(0) = 2, s(n) = 3.
Number of (s(0), s(1), ..., s(n)) such that 0 < s(i) < 4 and |s(i) - s(i-1)| <= 1 for i = 1,2,...,n, s(0) = 1, s(n) = 2. (End)
Counts walks of length n from a vertex of a triangle to another vertex to which a loop has been added. - Mario Catalani (mario.catalani(AT)unito.it), Jul 23 2004
Apart from initial terms, Pisot sequence P(2,5). See A008776 for definition of Pisot sequences. - David W. Wilson
Sums of antidiagonals of A038207 [Pascal's triangle squared]. - Ross La Haye, Oct 28 2004
The Pell primality test is "If N is an odd prime, then P(N)-Kronecker(2,N) is divisible by N". "Most" composite numbers fail this test, so it makes a useful pseudoprimality test. The odd composite numbers which are Pell pseudoprimes (i.e., that pass the above test) are in A099011. - Jack Brennen, Nov 13 2004
a(n) = sum of n-th row of triangle in A008288 = A094706(n) + A000079(n). - Reinhard Zumkeller, Dec 03 2004
Pell trapezoids (cf. A084158); for n > 0, A001109(n) = (a(n-1) + a(n+1))*a(n)/2; e.g., 1189 = (12+70)*29/2. - Charlie Marion, Apr 01 2006
(0!a(1), 1!a(2), 2!a(3), 3!a(4), ...) and (1,-2,-2,0,0,0,...) form a reciprocal pair under the list partition transform and associated operations described in A133314. - Tom Copeland, Oct 29 2007
Let C = (sqrt(2)+1) = 2.414213562..., then for n > 1, C^n = a(n)*(1/C) + a(n+1). Example: C^3 = 14.0710678... = 5*(0.414213562...) + 12. Let X = the 2 X 2 matrix [0, 1; 1, 2]; then X^n * [1, 0] = [a(n-1), a(n); a(n), a(n+1)]. a(n) = numerator of n-th convergent to (sqrt(2)-1) = 0.414213562... = [2, 2, 2, ...], the convergents being [1/2, 2/5, 5/12, ...]. - Gary W. Adamson, Dec 21 2007
A = sqrt(2) = 2/2 + 2/5 + 2/(5*29) + 2/(29*169) + 2/(169*985) + ...; B = ((5/2) - sqrt(2)) = 2/2 + 2/(2*12) + 2/(12*70) + 2/(70*408) + 2/(408*2378) + ...; A+B = 5/2. C = 1/2 = 2/(1*5) + 2/(2*12) + 2/(5*29) + 2/(12*70) + 2/(29*169) + ... - Gary W. Adamson, Mar 16 2008
From Clark Kimberling, Aug 27 2008: (Start)
Related convergents (numerator/denominator):
lower principal convergents: A002315/A001653
upper principal convergents: A001541/A001542
intermediate convergents: A052542/A001333
lower intermediate convergents: A005319/A001541
upper intermediate convergents: A075870/A002315
principal and intermediate convergents: A143607/A002965
lower principal and intermediate convergents: A143608/A079496
upper principal and intermediate convergents: A143609/A084068. (End)
Equals row sums of triangle A143808 starting with offset 1. - Gary W. Adamson, Sep 01 2008
Binomial transform of the sequence:= 0,1,0,2,0,4,0,8,0,16,..., powers of 2 alternating with zeros. - Philippe Deléham, Oct 28 2008
a(n) is also the sum of the n-th row of the triangle formed by starting with the top two rows of Pascal's triangle and then each next row has a 1 at both ends and the interior values are the sum of the three numbers in the triangle above that position. - Patrick Costello (pat.costello(AT)eku.edu), Dec 07 2008
Starting with offset 1 = eigensequence of triangle A135387 (an infinite lower triangular matrix with (2,2,2,...) in the main diagonal and (1,1,1,...) in the subdiagonal). - Gary W. Adamson, Dec 29 2008
Starting with offset 1 = row sums of triangle A153345. - Gary W. Adamson, Dec 24 2008
From Charlie Marion, Jan 07 2009: (Start)
In general, denominators, a(k,n) and numerators, b(k,n), of continued fraction convergents to sqrt((k+1)/k) may be found as follows:
let a(k,0) = 1, a(k,1) = 2k; for n > 0, a(k,2n) = 2*a(k,2n-1) + a(k,2n-2)
and a(k,2n+1) = (2k)*a(k,2n) + a(k,2n-1);
let b(k,0) = 1, b(k,1) = 2k+1; for n > 0, b(k,2n) = 2*b(k,2n-1) + b(k,2n-2)
and b(k,2n+1) = (2k)*b(k,2n) + b(k,2n-1).
For example, the convergents to sqrt(2/1) start 1/1, 3/2, 7/5, 17/12, 41/29.
In general, if a(k,n) and b(k,n) are the denominators and numerators, respectively, of continued fraction convergents to sqrt((k+1)/k) as defined above, then
k*a(k,2n)^2 - a(k,2n-1)*a(k,2n+1) = k = k*a(k,2n-2)*a(k,2n) - a(k,2n-1)^2 and
b(k,2n-1)*b(k,2n+1) - k*b(k,2n)^2 = k+1 = b(k,2n-1)^2 - k*b(k,2n-2)*b(k,2n);
for example, if k=1 and n=3, then a(1,n) = a(n+1) and
1*a(1,6)^2 - a(1,5)*a(1,7) = 1*169^2 - 70*408 = 1;
1*a(1,4)*a(1,6) - a(1,5)^2 = 1*29*169 - 70^2 = 1;
b(1,5)*b(1,7) - 1*b(1,6)^2 = 99*577 - 1*239^2 = 2;
b(1,5)^2 - 1*b(1,4)*b(1,6) = 99^2 - 1*41*239 = 2.
(End)
Starting with offset 1 = row sums of triangle A155002, equivalent to the statement that the Fibonacci sequence convolved with the Pell sequence prefaced with a "1": (1, 1, 2, 5, 12, 29, ...) = (1, 2, 5, 12, 29, ...). - Gary W. Adamson, Jan 18 2009
It appears that P(p) == 8^((p-1)/2) (mod p), p = prime; analogous to [Schroeder, p. 90]: Fp == 5^((p-1)/2) (mod p). Example: Given P(11) = 5741, == 8^5 (mod 11). Given P(17) = 11336689, == 8^8 (mod 17) since 17 divides (8^8 - P(17)). - Gary W. Adamson, Feb 21 2009
Equals eigensequence of triangle A154325. - Gary W. Adamson, Feb 12 2009
Another combinatorial interpretation of a(n-1) arises from a simple tiling scenario. Namely, a(n-1) gives the number of ways of tiling a 1 X n rectangle with indistinguishable 1 X 2 rectangles and 1 X 1 squares that come in two varieties, say, A and B. For example, with C representing the 1 X 2 rectangle, we obtain a(4)=12 from AAA, AAB, ABA, BAA, ABB, BAB, BBA, BBB, AC, BC, CA and CB. - Martin Griffiths, Apr 25 2009
a(n+1) = 2*a(n) + a(n-1), a(1)=1, a(2)=2 was used by Theon from Smyrna. - Sture Sjöstedt, May 29 2009
The n-th Pell number counts the perfect matchings of the edge-labeled graph C_2 x P_(n-1), or equivalently, the number of domino tilings of a 2 X (n-1) cylindrical grid. - Sarah-Marie Belcastro, Jul 04 2009
As a fraction: 1/79 = 0.0126582278481... or 1/9799 = 0.000102051229...(1/119 and 1/10199 for sequence in reverse). - Mark Dols, May 18 2010
Limit_{n->oo} (a(n)/a(n-1) - a(n-1)/a(n)) tends to 2.0. Example: a(7)/a(6) - a(6)/a(7) = 169/70 - 70/169 = 2.0000845... - Gary W. Adamson, Jul 16 2010
Numbers k such that 2*k^2 +- 1 is a square. - Vincenzo Librandi, Jul 18 2010
Starting (1, 2, 5, ...) = INVERTi transform of A006190: (1, 3, 10, 33, 109, ...). - Gary W. Adamson, Aug 06 2010
[u,v] = [a(n), a(n-1)] generates all Pythagorean triples [u^2-v^2, 2uv, u^2+v^2] whose legs differ by 1. - James R. Buddenhagen, Aug 14 2010
An elephant sequence, see A175654. For the corner squares six A[5] vectors, with decimal values between 21 and 336, lead to this sequence (without the leading 0). For the central square these vectors lead to the companion sequence A078057. - Johannes W. Meijer, Aug 15 2010
Let the 2 X 2 square matrix A=[2, 1; 1, 0] then a(n) = the (1,1) element of A^(n-1). - Carmine Suriano, Jan 14 2011
Define a t-circle to be a first-quadrant circle tangent to the x- and y-axes. Such a circle has coordinates equal to its radius. Let C(0) be the t-circle with radius 1. Then for n > 0, define C(n) to be the next larger t-circle which is tangent to C(n - 1). C(n) has radius A001333(2n) + a(2n)*sqrt(2) and each of the coordinates of its point of intersection with C(n + 1) is a(2n + 1) + (A001333(2n + 1)*sqrt(2))/2. See similar Comments for A001109 and A001653, Sep 14 2005. - Charlie Marion, Jan 18 2012
A001333 and A000129 give the diagonal numbers described by Theon from Smyrna. - Sture Sjöstedt, Oct 20 2012
Pell numbers could also be called "silver Fibonacci numbers", since, for n >= 1, F(n+1) = ceiling(phi*F(n)), if n is even and F(n+1) = floor(phi*F(n)), if n is odd, where phi is the golden ratio, while a(n+1) = ceiling(delta*a(n)), if n is even and a(n+1) = floor(delta*a(n)), if n is odd, where delta = delta_S = 1+sqrt(2) is the silver ratio. - Vladimir Shevelev, Feb 22 2013
a(n) is the number of compositions (ordered partitions) of n-1 into two sorts of 1's and one sort of 2's. Example: the a(3)=5 compositions of 3-1=2 are 1+1, 1+1', 1'+1, 1'+1', and 2. - Bob Selcoe, Jun 21 2013
Between every two consecutive squares of a 1 X n array there is a flap that can be folded over one of the two squares. Two flaps can be lowered over the same square in 2 ways, depending on which one is on top. The n-th Pell number counts the ways n-1 flaps can be lowered. For example, a sideway representation for the case n = 3 squares and 2 flaps is \\., .//, \./, ./., .\., where . is an empty square. - Jean M. Morales, Sep 18 2013
Define a(-n) to be a(n) for n odd and -a(n) for n even. Then a(n) = A005319(k)*(a(n-2k+1) - a(n-2k)) + a(n-4k) = A075870(k)*(a(n-2k+2) - a(n-2k+1)) - a(n-4k+2). - Charlie Marion, Nov 26 2013
An alternative formulation of the combinatorial tiling interpretation listed above: Except for n=0, a(n-1) is the number of ways of partial tiling a 1 X n board with 1 X 1 squares and 1 X 2 dominoes. - Matthew Lehman, Dec 25 2013
Define a(-n) to be a(n) for n odd and -a(n) for n even. Then a(n) = A077444(k)*a(n-2k+1) + a(n-4k+2). This formula generalizes the formula used to define this sequence. - Charlie Marion, Jan 30 2014
a(n-1) is the top left entry of the n-th power of any of the 3 X 3 matrices [0, 1, 1; 1, 1, 1; 0, 1, 1], [0, 1, 1; 0, 1, 1; 1, 1, 1], [0, 1, 0; 1, 1, 1; 1, 1, 1] or [0, 0, 1; 1, 1, 1; 1, 1, 1]. - R. J. Mathar, Feb 03 2014
a(n+1) counts closed walks on K2 containing two loops on the other vertex. Equivalently the (1,1) entry of A^(n+1) where the adjacency matrix of digraph is A=(0,1;1,2). - David Neil McGrath, Oct 28 2014
For n >= 1, a(n) equals the number of ternary words of length n-1 avoiding runs of zeros of odd lengths. - Milan Janjic, Jan 28 2015
This is a divisibility sequence (i.e., if n|m then a(n)|a(m)). - Tom Edgar, Jan 28 2015
A strong divisibility sequence, that is, gcd(a(n), a(m)) = a(gcd(n, m)) for all positive integers n and m. - Michael Somos, Jan 03 2017
a(n) is the number of compositions (ordered partitions) of n-1 into two kinds of parts, n and n', when the order of the 1 does not matter, or equivalently, when the order of the 1' does not matter. Example: When the order of the 1 does not matter, the a(3)=5 compositions of 3-1=2 are 1+1, 1+1'=1+1, 1'+1', 2 and 2'. (Contrast with entry from Bob Selcoe dated Jun 21 2013.) - Gregory L. Simay, Sep 07 2017
Number of weak orderings R on {1,...,n} that are weakly single-peaked w.r.t. the total ordering 1 < ... < n and for which {1,...,n} has exactly one minimal element for the weak ordering R. - J. Devillet, Sep 28 2017
Also the number of matchings in the (n-1)-centipede graph. - Eric W. Weisstein, Sep 30 2017
Let A(r,n) be the total number of ordered arrangements of an n+r tiling of r red squares and white tiles of total length n, where the individual tile lengths can range from 1 to n. A(r,0) corresponds to a tiling of r red squares only, and so A(r,0)=1. Let A_1(r,n) = Sum_{j=0..n} A(r,j) and let A_s(r,n) = Sum_{j=0..n} A_(s-1)(r,j). Then A_0(1,n) + A_2(3,n-4) + A_4(5,n-8) + ... + A_(2j) (2j+1, n-4j) = a(n) without the initial 0. - Gregory L. Simay, May 25 2018
(1, 2, 5, 12, 29, ...) is the fourth INVERT transform of (1, -2, 5, -12, 29, ...), as shown in A073133. - Gary W. Adamson, Jul 17 2019
Number of 2-compositions of n restricted to odd parts (and allowed zeros); see Hopkins & Ouvry reference. - Brian Hopkins, Aug 17 2020
Also called the 2-metallonacci sequence; the g.f. 1/(1-k*x-x^2) gives the k-metallonacci sequence. - Michael A. Allen, Jan 23 2023
Named by Lucas (1878) after the English mathematician John Pell (1611-1685). - Amiram Eldar, Oct 02 2023
a(n) is the number of compositions of n when there are F(i) parts of size i, with i,n >= 1, F(n) the Fibonacci numbers, A000045(n) (see example below). - Enrique Navarrete, Dec 15 2023

Examples

			G.f. = x + 2*x^2 + 5*x^3 + 12*x^4 + 29*x^5 + 70*x^6 + 169*x^7 + 408*x^8 + 985*x^9 + ...
From _Enrique Navarrete_, Dec 15 2023: (Start)
From the comment on compositions with Fibonacci number of parts, F(n), there are F(1)=1 type of 1, F(2)=1 type of 2, F(3)=2 types of 3, F(4)=3 types of 4, F(5)=5 types of 5 and F(6)=8 types of 6.
The following table gives the number of compositions of n=6 with Fibonacci number of parts:
Composition, number of such compositions, number of compositions of this type:
6,           1,     8;
5+1,         2,    10;
4+2,         2,     6;
3+3,         1,     4;
4+1+1,       3,     9;
3+2+1,       6,    12;
2+2+2,       1,     1;
3+1+1+1,     4,     8;
2+2+1+1,     6,     6;
2+1+1+1+1,   5,     5;
1+1+1+1+1+1, 1,     1;
for a total of a(6)=70 compositions of n=6. (End).
		

References

  • J. Austin and L. Schneider, Generalized Fibonacci sequences in Pythagorean triple preserving sequences, Fib. Q., 58:1 (2020), 340-350.
  • P. Bachmann, Niedere Zahlentheorie (1902, 1910), reprinted Chelsea, NY, 1968, vol. 2, p. 76.
  • A. H. Beiler, Recreations in the Theory of Numbers. New York: Dover, pp. 122-125, 1964.
  • Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, page 941.
  • J. M. Borwein, D. H. Bailey, and R. Girgensohn, Experimentation in Mathematics, A K Peters, Ltd., Natick, MA, 2004. x+357 pp. See p. 53.
  • John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See p. 204.
  • John Derbyshire, Prime Obsession, Joseph Henry Press, 2004, see p. 16.
  • S. R. Finch, Mathematical Constants, Cambridge, 2003, Section 1.1.
  • Shaun Giberson and Thomas J. Osler, Extending Theon's Ladder to Any Square Root, Problem 3858, Elementa, No. 4 1996.
  • R. P. Grimaldi, Ternary strings with no consecutive 0's and no consecutive 1's, Congressus Numerantium, 205 (2011), 129-149.
  • Jan Gullberg, Mathematics from the Birth of Numbers, W. W. Norton & Co., NY & London, 1997, §8.5 The Fibonacci and Related Sequences, p. 288.
  • Thomas Koshy, Pell and Pell-Lucas Numbers with Applications, Springer, New York, 2014.
  • Serge Lang, Introduction to Diophantine Approximations, Addison-Wesley, New York, 1966.
  • Paulo Ribenboim, The Book of Prime Number Records. Springer-Verlag, NY, 2nd ed., 1989, p. 43.
  • Paulo Ribenboim, My Numbers, My Friends: Popular Lectures on Number Theory, Springer-Verlag, NY, 2000, p. 3.
  • Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See pp. 46, 61.
  • J. Roberts, Lure of the Integers, Math. Assoc. America, 1992, p. 224.
  • Manfred R. Schroeder, "Number Theory in Science and Communication", 5th ed., Springer-Verlag, 2009, p. 90.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1987, p. 34.
  • D. B. West, Combinatorial Mathematics, Cambridge, 2021, p. 62.

Crossrefs

Partial sums of A001333.
2nd row of A172236.
a(n) = A054456(n-1, 0), n>=1 (first column of triangle).
Cf. A175181 (Pisano periods), A214028 (Entry points), A214027 (number of zeros in a fundamental period).
A077985 is a signed version.
INVERT transform of Fibonacci numbers (A000045).
Cf. A038207.
The following sequences (and others) belong to the same family: A001333, A000129, A026150, A002605, A046717, A015518, A084057, A063727, A002533, A002532, A083098, A083099, A083100, A015519.
Cf. A048739.
Cf. A073133.
Cf. A041085.
Sequences with g.f. 1/(1-k*x-x^2) or x/(1-k*x-x^2): A000045 (k=1), this sequence (k=2), A006190 (k=3), A001076 (k=4), A052918 (k=5), A005668 (k=6), A054413 (k=7), A041025 (k=8), A099371 (k=9), A041041 (k=10), A049666 (k=11), A041061 (k=12), A140455 (k=13), A041085 (k=14), A154597 (k=15), A041113 (k=16), A178765 (k=17), A041145 (k=18), A243399 (k=19), A041181 (k=20).

Programs

  • GAP
    a := [0,1];; for n in [3..10^3] do a[n] := 2 * a[n-1] + a[n-2]; od; A000129 := a; # Muniru A Asiru, Oct 16 2017
    
  • Haskell
    a000129 n = a000129_list !! n
    a000129_list = 0 : 1 : zipWith (+) a000129_list (map (2 *) $ tail a000129_list)
    -- Reinhard Zumkeller, Jan 05 2012, Feb 05 2011
    
  • Magma
    [0] cat [n le 2 select n else 2*Self(n-1) + Self(n-2): n in [1..35]]; // Vincenzo Librandi, Aug 08 2015
    
  • Maple
    A000129 := proc(n) option remember; if n <=1 then n; else 2*procname(n-1)+procname(n-2); fi; end;
    a:= n-> (<<2|1>, <1|0>>^n)[1, 2]: seq(a(n), n=0..40); # Alois P. Heinz, Aug 01 2008
    A000129 := n -> `if`(n<2, n, 2^(n-1)*hypergeom([1-n/2, (1-n)/2], [1-n], -1)):
    seq(simplify(A000129(n)), n=0..31); # Peter Luschny, Dec 17 2015
  • Mathematica
    CoefficientList[Series[x/(1 - 2*x - x^2), {x, 0, 60}], x] (* Stefan Steinerberger, Apr 08 2006 *)
    Expand[Table[((1 + Sqrt[2])^n - (1 - Sqrt[2])^n)/(2Sqrt[2]), {n, 0, 30}]] (* Artur Jasinski, Dec 10 2006 *)
    LinearRecurrence[{2, 1}, {0, 1}, 60] (* Harvey P. Dale, Jan 04 2012 *)
    a[ n_] := With[ {s = Sqrt@2}, ((1 + s)^n - (1 - s)^n) / (2 s)] // Simplify; (* Michael Somos, Jun 01 2013 *)
    Table[Fibonacci[n, 2], {n, 0, 20}] (* Vladimir Reshetnikov, May 08 2016 *)
    Fibonacci[Range[0, 20], 2] (* Eric W. Weisstein, Sep 30 2017 *)
    a[ n_] := ChebyshevU[n - 1, I] / I^(n - 1); (* Michael Somos, Oct 30 2021 *)
  • Maxima
    a[0]:0$
    a[1]:1$
    a[n]:=2*a[n-1]+a[n-2]$
    A000129(n):=a[n]$
    makelist(A000129(n),n,0,30); /* Martin Ettl, Nov 03 2012 */
    
  • Maxima
    makelist((%i)^(n-1)*ultraspherical(n-1,1,-%i),n,0,24),expand; /* Emanuele Munarini, Mar 07 2018 */
    
  • PARI
    for (n=0, 4000, a=contfracpnqn(vector(n, i, 1+(i>1)))[2, 1]; if (a > 10^(10^3 - 6), break); write("b000129.txt", n, " ", a)); \\ Harry J. Smith, Jun 12 2009
    
  • PARI
    {a(n) = imag( (1 + quadgen( 8))^n )}; /* Michael Somos, Jun 01 2013 */
    
  • PARI
    {a(n) = if( n<0, -(-1)^n, 1) * contfracpnqn( vector( abs(n), i, 1 + (i>1))) [2, 1]}; /* Michael Somos, Jun 01 2013 */
    
  • PARI
    a(n)=([2, 1; 1, 0]^n)[2,1] \\ Charles R Greathouse IV, Mar 04 2014
    
  • PARI
    {a(n) = polchebyshev(n-1, 2, I) / I^(n-1)}; /* Michael Somos, Oct 30 2021 */
    
  • Python
    from itertools import islice
    def A000129_gen(): # generator of terms
        a, b = 0, 1
        yield from [a,b]
        while True:
            a, b = b, a+2*b
            yield b
    A000129_list = list(islice(A000129_gen(),20)) # Chai Wah Wu, Jan 11 2022
  • Sage
    [lucas_number1(n, 2, -1) for n in range(30)]  # Zerinvary Lajos, Apr 22 2009
    

Formula

G.f.: x/(1 - 2*x - x^2). - Simon Plouffe in his 1992 dissertation.
a(2n+1)=A001653(n). a(2n)=A001542(n). - Ira Gessel, Sep 27 2002
G.f.: Sum_{n >= 0} x^(n+1) *( Product_{k = 1..n} (2*k + x)/(1 + 2*k*x) ) = Sum_{n >= 0} x^(n+1) *( Product_{k = 1..n} (x + 1 + k)/(1 + k*x) ) = Sum_{n >= 0} x^(n+1) *( Product_{k = 1..n} (x + 3 - k)/(1 - k*x) ) may all be proved using telescoping series. - Peter Bala, Jan 04 2015
a(n) = 2*a(n-1) + a(n-2), a(0)=0, a(1)=1.
a(n) = ((1 + sqrt(2))^n - (1 - sqrt(2))^n)/(2*sqrt(2)).
For initial values a(0) and a(1), a(n) = ((a(0)*sqrt(2)+a(1)-a(0))*(1+sqrt(2))^n + (a(0)*sqrt(2)-a(1)+a(0))*(1-sqrt(2))^n)/(2*sqrt(2)). - Shahreer Al Hossain, Aug 18 2019
a(n) = integer nearest a(n-1)/(sqrt(2) - 1), where a(0) = 1. - Clark Kimberling
a(n) = Sum_{i, j, k >= 0: i+j+2k = n} (i+j+k)!/(i!*j!*k!).
a(n)^2 + a(n+1)^2 = a(2n+1) (1999 Putnam examination).
a(2n) = 2*a(n)*A001333(n). - John McNamara, Oct 30 2002
a(n) = ((-i)^(n-1))*S(n-1, 2*i), with S(n, x) := U(n, x/2) Chebyshev's polynomials of the second kind. See A049310. S(-1, x)=0, S(-2, x)= -1.
Binomial transform of expansion of sinh(sqrt(2)x)/sqrt(2). E.g.f.: exp(x)sinh(sqrt(2)x)/sqrt(2). - Paul Barry, May 09 2003
a(n) = Sum_{k=0..floor(n/2)} binomial(n, 2k+1)*2^k. - Paul Barry, May 13 2003
a(n-2) + a(n) = (1 + sqrt(2))^(n-1) + (1 - sqrt(2))^(n-1) = A002203(n-1). (A002203(n))^2 - 8(a(n))^2 = 4(-1)^n. - Gary W. Adamson, Jun 15 2003
Unreduced g.f.: x(1+x)/(1 - x - 3x^2 - x^3); a(n) = a(n-1) + 3*a(n-2) + a(n-2). - Mario Catalani (mario.catalani(AT)unito.it), Jul 23 2004
a(n+1) = Sum_{k=0..floor(n/2)} binomial(n-k, k)*2^(n-2k). - Mario Catalani (mario.catalani(AT)unito.it), Jul 23 2004
Apart from initial terms, inverse binomial transform of A052955. - Paul Barry, May 23 2004
a(n)^2 + a(n+2k+1)^2 = A001653(k)*A001653(n+k); e.g., 5^2 + 70^2 = 5*985. - Charlie Marion Aug 03 2005
a(n+1) = Sum_{k=0..n} binomial((n+k)/2, (n-k)/2)*(1+(-1)^(n-k))*2^k/2. - Paul Barry, Aug 28 2005
a(n) = a(n-1) + A001333(n-1) = A001333(n) - a(n-1) = A001109(n)/A001333(n) = sqrt(A001110(n)/A001333(n)^2) = ceiling(sqrt(A001108(n)/2)). - Henry Bottomley, Apr 18 2000
a(n) = F(n, 2), the n-th Fibonacci polynomial evaluated at x=2. - T. D. Noe, Jan 19 2006
Define c(2n) = -A001108(n), c(2n+1) = -A001108(n+1) and d(2n) = d(2n+1) = A001652(n); then ((-1)^n)*(c(n) + d(n)) = a(n). [Proof given by Max Alekseyev.] - Creighton Dement, Jul 21 2005
a(r+s) = a(r)*a(s+1) + a(r-1)*a(s). - Lekraj Beedassy, Sep 03 2006
a(n) = (b(n+1) + b(n-1))/n where {b(n)} is the sequence A006645. - Sergio Falcon, Nov 22 2006
From Miklos Kristof, Mar 19 2007: (Start)
Let F(n) = a(n) = Pell numbers, L(n) = A002203 = companion Pell numbers (A002203):
For a >= b and odd b, F(a+b) + F(a-b) = L(a)*F(b).
For a >= b and even b, F(a+b) + F(a-b) = F(a)*L(b).
For a >= b and odd b, F(a+b) - F(a-b) = F(a)*L(b).
For a >= b and even b, F(a+b) - F(a-b) = L(a)*F(b).
F(n+m) + (-1)^m*F(n-m) = F(n)*L(m).
F(n+m) - (-1)^m*F(n-m) = L(n)*F(m).
F(n+m+k) + (-1)^k*F(n+m-k) + (-1)^m*(F(n-m+k) + (-1)^k*F(n-m-k)) = F(n)*L(m)*L(k).
F(n+m+k) - (-1)^k*F(n+m-k) + (-1)^m*(F(n-m+k) - (-1)^k*F(n-m-k)) = L(n)*L(m)*F(k).
F(n+m+k) + (-1)^k*F(n+m-k) - (-1)^m*(F(n-m+k) + (-1)^k*F(n-m-k)) = L(n)*F(m)*L(k).
F(n+m+k) - (-1)^k*F(n+m-k) - (-1)^m*(F(n-m+k) - (-1)^k*F(n-m-k)) = 8*F(n)*F(m)*F(k). (End)
a(n+1)*a(n) = 2*Sum_{k=0..n} a(k)^2 (a similar relation holds for A001333). - Creighton Dement, Aug 28 2007
a(n+1) = Sum_{k=0..n} binomial(n+1,2k+1) * 2^k = Sum_{k=0..n} A034867(n,k) * 2^k = (1/n!) * Sum_{k=0..n} A131980(n,k) * 2^k. - Tom Copeland, Nov 30 2007
Equals row sums of unsigned triangle A133156. - Gary W. Adamson, Apr 21 2008
a(n) (n >= 3) is the determinant of the (n-1) X (n-1) tridiagonal matrix with diagonal entries 2, superdiagonal entries 1 and subdiagonal entries -1. - Emeric Deutsch, Aug 29 2008
a(n) = A000045(n) + Sum_{k=1..n-1} A000045(k)*a(n-k). - Roger L. Bagula and Gary W. Adamson, Sep 07 2008
From Hieronymus Fischer, Jan 02 2009: (Start)
fract((1+sqrt(2))^n) = (1/2)*(1 + (-1)^n) - (-1)^n*(1+sqrt(2))^(-n) = (1/2)*(1 + (-1)^n) - (1-sqrt(2))^n.
See A001622 for a general formula concerning the fractional parts of powers of numbers x > 1, which satisfy x - x^(-1) = floor(x).
a(n) = round((1+sqrt(2))^n/(2*sqrt(2))) for n > 0. (End) [last formula corrected by Josh Inman, Mar 05 2024]
a(n) = ((4+sqrt(18))*(1+sqrt(2))^n + (4-sqrt(18))*(1-sqrt(2))^n)/4 offset 0. - Al Hakanson (hawkuu(AT)gmail.com), Aug 08 2009
If p[i] = Fibonacci(i) and if A is the Hessenberg matrix of order n defined by A[i,j] = p[j-i+1] when i<=j, A[i,j]=-1 when i=j+1, and A[i,j]=0 otherwise, then, for n >= 1, a(n) = det A. - Milan Janjic, May 08 2010
a(n) = 3*a(n-1) - a(n-2) - a(n-3), n > 2. - Gary Detlefs, Sep 09 2010
From Charlie Marion, Apr 13 2011: (Start)
a(n) = 2*(a(2k-1) + a(2k))*a(n-2k) - a(n-4k).
a(n) = 2*(a(2k) + a(2k+1))*a(n-2k-1) + a(n-4k-2). (End)
G.f.: x/(1 - 2*x - x^2) = sqrt(2)*G(0)/4; G(k) = ((-1)^k) - 1/(((sqrt(2) + 1)^(2*k)) - x*((sqrt(2) + 1)^(2*k))/(x + ((sqrt(2) - 1)^(2*k + 1))/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Dec 02 2011
In general, for n > k, a(n) = a(k+1)*a(n-k) + a(k)*a(n-k-1). See definition of Pell numbers and the formula for Sep 04 2008. - Charlie Marion, Jan 17 2012
Sum{n>=1} (-1)^(n-1)/(a(n)*a(n+1)) = sqrt(2) - 1. - Vladimir Shevelev, Feb 22 2013
From Vladimir Shevelev, Feb 24 2013: (Start)
(1) Expression a(n+1) via a(n): a(n+1) = a(n) + sqrt(2*a^2(n) + (-1)^n);
(2) a(n+1)^2 - a(n)*a(n+2) = (-1)^n;
(3) Sum_{k=1..n} (-1)^(k-1)/(a(k)*a(k+1)) = a(n)/a(n+1);
(4) a(n)/a(n+1) = sqrt(2) - 1 + r(n), where |r(n)| < 1/(a(n+1)*a(n+2)). (End)
a(-n) = -(-1)^n * a(n). - Michael Somos, Jun 01 2013
G.f.: G(0)/(2+2*x) - 1/(1+x), where G(k) = 1 + 1/(1 - x*(2*k-1)/(x*(2*k+1) - 1/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Aug 10 2013
G.f.: Q(0)*x/2, where Q(k) = 1 + 1/(1 - x*(4*k+2 + x)/( x*(4*k+4 + x) + 1/Q(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Aug 30 2013
a(n) = Sum_{r=0..n-1} Sum_{k=0..n-r-1} binomial(r+k,k)*binomial(k,n-k-r-1). - Peter Luschny, Nov 16 2013
a(n) = Sum_{k=1,3,5,...<=n} C(n,k)*2^((k-1)/2). - Vladimir Shevelev, Feb 06 2014
a(2n) = 2*a(n)*(a(n-1) + a(n)). - John Blythe Dobson, Mar 08 2014
a(k*n) = a(k)*a(k*n-k+1) + a(k-1)*a(k*n-k). - Charlie Marion, Mar 27 2014
a(k*n) = 2*a(k)*(a(k*n-k)+a(k*n-k-1)) + (-1)^k*a(k*n-2k). - Charlie Marion, Mar 30 2014
a(n+1) = (1+sqrt(2))*a(n) + (1-sqrt(2))^n. - Art DuPre, Apr 04 2014
a(n+1) = (1-sqrt(2))*a(n) + (1+sqrt(2))^n. - Art DuPre, Apr 04 2014
a(n) = F(n) + Sum_{k=1..n} F(k)*a(n-k), n >= 0 where F(n) the Fibonacci numbers A000045. - Ralf Stephan, May 23 2014
a(n) = round(sqrt(a(2n) + a(2n-1)))/2. - Richard R. Forberg, Jun 22 2014
a(n) = Product_{k divides n} A008555(k). - Tom Edgar, Jan 28 2015
a(n+k)^2 - A002203(k)*a(n)*a(n+k) + (-1)^k*a(n)^2 = (-1)^n*a(k)^2. - Alexander Samokrutov, Aug 06 2015
a(n) = 2^(n-1)*hypergeom([1-n/2, (1-n)/2], [1-n], -1) for n >= 2. - Peter Luschny, Dec 17 2015
a(n+1) = Sum_{k=0..n} binomial(n,k)*2^floor(k/2). - Tony Foster III, May 07 2017
a(n) = exp((i*Pi*n)/2)*sinh(n*arccosh(-i))/sqrt(2). - Peter Luschny, Mar 07 2018
From Rogério Serôdio, Mar 30 2018: (Start)
Some properties:
(1) a(n)^2 - a(n-2)^2 = 2*a(n-1)*(a(n) + a(n-2)) (see A005319);
(2) a(n-k)*a(n+k) = a(n)^2 + (-1)^(n+k+1)*a(k)^2;
(3) Sum_{k=2..n+1} a(k)*a(k-1) = a(n+1)^2 if n is odd, else a(n+1)^2 - 1 if n is even;
(4) a(n) - a(n-2*k+1) = (A077444(k) - 1)*a(n-2*k+1) + a(n-4*k+2);
(5) Sum_{k=n..n+9} a(k) = 41*A001333(n+5). (End)
From Kai Wang, Dec 30 2019: (Start)
a(m+r)*a(n+s) - a(m+s)*a(n+r) = -(-1)^(n+s)*a(m-n)*a(r-s).
a(m+r)*a(n+s) + a(m+s)*a(n+r) = (2*A002203(m+n+r+s) - (-1)^(n+s)*A002203(m-n)*A002203(r-s))/8.
A002203(m+r)*A002203(n+s) - A002203(m+s)*A002203(n+r) = (-1)^(n+s)*8*a(m-n)*a(r-s).
A002203(m+r)*A002203(n+s) - 8*a(m+s)*a(n+r) = (-1)^(n+s)*A002203(m-n)*A002203(r-s).
A002203(m+r)*A002203(n+s) + 8*a(m+s)*a(n+r) = 2*A002203(m+n+r+s)+ (-1)^(n+s)*8*a(m-n)*a(r-s). (End)
From Kai Wang, Jan 12 2020: (Start)
a(n)^2 - a(n+1)*a(n-1) = (-1)^(n-1).
a(n)^2 - a(n+r)*a(n-r) = (-1)^(n-r)*a(r)^2.
a(m)*a(n+1) - a(m+1)*a(n) = (-1)^n*a(m-n).
a(m-n) = (-1)^n (a(m)*A002203(n) - A002203(m)*a(n))/2.
a(m+n) = (a(m)*A002203(n) + A002203(m)*a(n))/2.
A002203(n)^2 - A002203(n+r)*A002203(n-r) = (-1)^(n-r-1)*8*a(r)^2.
A002203(m)*A002203(n+1) - A002203(m+1)*A002203(n) = (-1)^(n-1)*8*a(m-n).
A002203(m-n) = (-1)^(n)*(A002203(m)*A002203(n) - 8*a(m)*a(n) )/2.
A002203(m+n) = (A002203(m)*A002203(n) + 8*a(m)*a(n) )/2. (End)
From Kai Wang, Mar 03 2020: (Start)
Sum_{m>=1} arctan(2/a(2*m+1)) = arctan(1/2).
Sum_{m>=2} arctan(2/a(2*m+1)) = arctan(1/12).
In general, for n > 0,
Sum_{m>=n} arctan(2/a(2*m+1)) = arctan(1/a(2*n)). (End)
a(n) = (A001333(n+3*k) + (-1)^(k-1)*A001333(n-3*k)) / (20*A041085(k-1)) for any k>=1. - Paul Curtz, Jun 23 2021
Sum_{i=0..n} a(i)*J(n-i) = (a(n+1) + a(n) - J(n+2))/2 for J(n) = A001045(n). - Greg Dresden, Jan 05 2022
From Peter Bala, Aug 20 2022: (Start)
Sum_{n >= 1} 1/(a(2*n) + 1/a(2*n)) = 1/2.
Sum_{n >= 1} 1/(a(2*n+1) - 1/a(2*n+1)) = 1/4. Both series telescope - see A075870 and A005319.
Product_{n >= 1} ( 1 + 2/a(2*n) ) = 1 + sqrt(2).
Product_{n >= 2} ( 1 - 2/a(2*n) ) = (1/3)*(1 + sqrt(2)). (End)
G.f. = 1/(1 - Sum_{k>=1} Fibonacci(k)*x^k). - Enrique Navarrete, Dec 17 2023
Sum_{n >=1} 1/a(n) = 1.84220304982752858079237158327980838... - R. J. Mathar, Feb 05 2024
a(n) = ((3^(n+1) + 1)^(n-1) mod (9^(n+1) - 2)) mod (3^(n+1) - 1). - Joseph M. Shunia, Jun 06 2024

A001076 Denominators of continued fraction convergents to sqrt(5).

Original entry on oeis.org

0, 1, 4, 17, 72, 305, 1292, 5473, 23184, 98209, 416020, 1762289, 7465176, 31622993, 133957148, 567451585, 2403763488, 10182505537, 43133785636, 182717648081, 774004377960, 3278735159921, 13888945017644, 58834515230497, 249227005939632, 1055742538989025
Offset: 0

Views

Author

Keywords

Comments

a(2*n+1) with b(2*n+1) := A001077(2*n+1), n >= 0, give all (positive integer) solutions to Pell equation b^2 - 5*a^2 = -1, a(2*n) with b(2*n) := A001077(2*n), n >= 1, give all (positive integer) solutions to Pell equation b^2 - 5*a^2 = +1 (cf. Emerson reference).
Bisection: a(2*n+1) = T(2*n+1, sqrt(5))/sqrt(5) = A007805(n), n >= 0 and a(2*n) = 4*S(n-1,18), n >= 0, with T(n,x), resp. S(n,x), Chebyshev's polynomials of the first, resp. second kind. S(-1,x)=0. See A053120, resp. A049310. S(n,18)=A049660(n+1). - Wolfdieter Lang, Jan 10 2003
Apart from initial terms, this is the Pisot sequence E(4,17), a(n) = floor(a(n-1)^2/a(n-2) + 1/2).
This is also the Horadam sequence (0,1,1,4), having the recurrence relation a(n) = s*a(n-1) + r*a(n-2); for n > 1, where a(0) = 0, a(1) = 1, s = 4, r = 1. a(n) / a(n-1) converges to 5^1/2 + 2 as n approaches infinity. 5^(1/2) + 2 can also be written as (2 * Phi) + 1 and Phi^2 + Phi. - Ross La Haye, Aug 18 2003
Numerators of continued fraction [4, 4, 4, ...], where the convergents to [4, 4, 4, ...] = (4/1, 17/4, 72/17, ...). Let X = the 2 X 2 matrix [0, 1; 1, 4]; then X^n = [a(n-1), a(n); a(n), a(n+1)]; e.g., X^3 = [4, 17; 17, 72]. Let C = the limit of a(n)/a(n-1) = 2 + sqrt(5) = 4.236067977...; then C^n = a(n+1) + (1/C)*a(n), where (1/C) = 0.236067977... . Example: C^3 = 76.01315556..., = 72 + 17*(0.2360679...). - Gary W. Adamson, Dec 15 2007, corrected by Greg Dresden, Sep 16 2019, corrected by Alex Mark, Jul 21 2020
Sqrt(5) = 4/2 + 4/17 + 4/(17*305) + 4/(305*5473) + 4/(5473*98209) + ... . - Gary W. Adamson, Dec 15 2007
a(p) == 20^((p-1)/2) (mod p) for odd primes p. - Gary W. Adamson, Feb 22 2009
a(n) = A167808(3*n). - Reinhard Zumkeller, Nov 12 2009
For n >= 2, a(n) equals the permanent of the (n-1) X (n-1) tridiagonal matrix with 4's along the main diagonal and 1's along the superdiagonal and the subdiagonal. - John M. Campbell, Jul 08 2011
Moreover, a(n) is the second binomial transform of (0,1,0,5,0,25,...) (see also A033887). This fact can be proved similarly like the proof of Paul Barry's remark in A033887 by using the following scaling identity for delta-Fibonacci numbers: y^n b(n;x/y) = Sum_{k=0..n} binomial(n,k) (y-1)^(n-k) b(k;x) and the fact that b(n;2) = (1-(-1)^n) 5^floor(n/2). - Roman Witula, Jul 12 2012
Binomial transform of 0, 1, 2, 8, 24, 80, 256, ... (A063727 with offset 1). - R. J. Mathar, Feb 05 2014
For n >= 1, a(n) equals the number of words of length n-1 on alphabet {0,1,...,4} avoiding runs of zeros of odd lengths. - Milan Janjic, Jan 28 2015
With offset 1 is the INVERT transform of A006190: (1, 3, 10, 33, 109, 360, ...). - Gary W. Adamson, Jul 24 2015
From Rogério Serôdio, Mar 30 2018: (Start)
This is a divisibility sequence (i.e., if n|m then a(n)|a(m)).
gcd(a(n),a(n+k)) = a(gcd(n, k)) for all positive integers n and k. (End)
The initial 0 of this sequence is in contradiction with the fact that 0 is no valid denominator and according to all standard references, the first convergent of a continued fraction is p(0)/q(0) = b(0)/1 where b(0) is the first term of the continued fraction, given by the integer part of the number. One may artificially define q(-1) = 0 to have a recurrent relation q(n) = b(n)*q(n-1) + q(n-2), n >= 1, but then its index should be -1. - M. F. Hasler, Nov 01 2019
Number of 4-compositions of n restricted to odd parts (and allowed zeros); see Hopkins & Ouvry reference. - Brian Hopkins, Aug 17 2020
From Michael A. Allen, Feb 15 2023: (Start)
Also called the 4-metallonacci sequence; the g.f. 1/(1-k*x-x^2) gives the k-metallonacci sequence.
a(n+1) is the number of tilings of an n-board (a board with dimensions n X 1) using unit squares and dominoes (with dimensions 2 X 1) if there are 4 kinds of squares available. (End)
a(n) is the smallest nonnegative integer that is the sum of n, but no fewer, Fibonacci numbers including negative-index Fibonacci numbers (A039834), with that sum being a(n) = Sum_{i=0..n-1} A000045(3*i+1). a(n) is also the smallest nonnegative integer that is the sum of n, but no fewer, terms each of which is either a Fibonacci number or the negative of a Fibonacci number. (See A027941 for negatives disallowed.) - Mike Speciner, Oct 08 2023
From Enrique Navarrete, Dec 16 2023: (Start)
a(n) is the number of compositions of n when there are P(k) sorts of parts k, with k,n > = 1, where P(k) = A006190(k) is the k-th 3-metallonacci number (see example below).
In general, the number of compositions with k-metallonacci number of parts is counted by the (k+1)-st metallonacci sequence (note k=1 and k=2 are the Fibonacci and the Pell numbers, respectively). (End).
a(n) is the number of tilings of a 2 X n rectangle missing the top right 1 X 1 cell, using 1 X 1 squares, dominoes and right trominoes. Compare to A110679 which is the same problem but without the missing top right cell. - Greg Dresden and Yilin Zhu, Jul 10 2025

Examples

			1 2 9 38 161 (A001077)
-,-,-,--,---, ...
0 1 4 17 72 (A001076)
G.f. = x + 4*x^2 + 17*x^3 + 72*x^4 + 305*x^5 + 1292*x^6 + 5473*x^7 + 23184*x^8 + ...
From _Enrique Navarrete_, Dec 16 2023: (Start)
From the comment on compositions with 3-metallonacci sorts of parts, A006190(k), there are A006190(1)=1 type of 1, A006190(2)=3 types of 2, A006190(3)=10 types of 3, A006190(4)=33 types of 4, A006190(5)=109 types of 5 and A006190(6)=360 types of 6. The following table gives the number of compositions of n=6:
Composition, number of such compositions, number of compositions of this type:
 6,              1,      360;
 5+1,            2,      218;
 4+2,            2,      198;
 3+3,            1,      100;
 4+1+1,          3,       99;
 3+2+1,          6,      180;
 2+2+2,          1,       27;
 3+1+1+1,        4,       40;
 2+2+1+1,        6,       54;
 2+1+1+1+1,      5,       15;
 1+1+1+1+1+1,    1,        1;
for a total of a(6)=1292 compositions of n=6. (End)
		

References

  • A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, id. 23.
  • S. Koshkin, Non-classical linear divisibility sequences ..., Fib. Q., 57 (No. 1, 2019), 68-80. See Table 1.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • V. Thébault, Les Récréations Mathématiques. Gauthier-Villars, Paris, 1952, p. 282.

Crossrefs

Row n=4 of A073133, A172236 and A352361.
Cf. A000045, A001077, A015448, A175183 (Pisano periods).
Partial sums of A033887. First differences of A049652. Bisection of A059973.
Third column of array A028412.

Programs

  • GAP
    a:=[0,1];; for n in [3..30] do a[n]:=4*a[n-1]+a[n-2]; od; a; # Muniru A Asiru, Mar 31 2018
    
  • Magma
    I:=[0,1]; [n le 2 select I[n] else 4*Self(n-1) + Self(n-2): n in [1..30]]; // G. C. Greubel, Jan 24 2018
    
  • Maple
    A001076:=-1/(-1+4*z+z**2); # conjectured by Simon Plouffe in his 1992 dissertation
  • Mathematica
    Join[{0}, Denominator[Convergents[Sqrt[5], 30]]] (* Harvey P. Dale, Dec 10 2011 *)
    a[ n_] := Fibonacci[3*n] / 2; (* Michael Somos, Feb 23 2014 *)
    a[ n_] := ((2 + Sqrt[5])^n - (2 - Sqrt[5])^n) /(2 Sqrt[5]) // Simplify; (* Michael Somos, Feb 23 2014 *)
    LinearRecurrence[{4, 1}, {0, 1}, 26] (* Jean-François Alcover, Sep 23 2017 *)
    a[ n_] := Fibonacci[n, 4]; (* Michael Somos, Nov 02 2021 *)
  • Maxima
    a(n):=sum(4^(n-1-2*k)*binomial(n-k-1,n-2*k-1),k,0,floor((n)/2));/* Vladimir Kruchinin, Oct 02 2022 */
  • MuPAD
    numlib::fibonacci(3*n)/2 $ n = 0..30; // Zerinvary Lajos, May 09 2008
    
  • PARI
    {a(n) = fibonacci(3*n) / 2}; /* Michael Somos, Aug 11 2009 */
    
  • PARI
    {a(n) = imag( (2 + quadgen(20))^n )}; /* Michael Somos, Feb 23 2014 */
    
  • PARI
    {a(n) = polchebyshev(n-1, 2, 2*I)/I^(n-1)}; /* Michael Somos, Nov 02 2021 */
    
  • Sage
    [lucas_number1(n,4,-1) for n in range(23)] # Zerinvary Lajos, Apr 23 2009
    
  • Sage
    [fibonacci(3*n)/2 for n in range(23)] # Zerinvary Lajos, May 15 2009
    

Formula

a(n) = 4*a(n-1) + a(n-2), n > 1. a(0)=0, a(1)=1.
G.f.: x/(1 - 4*x - x^2).
a(n) = ((2+sqrt(5))^n - (2-sqrt(5))^n)/(2*sqrt(5)).
a(n) = A014445(n)/2 = F(3n)/2.
a(n) = ((-i)^(n-1))*S(n-1, 4*i), with i^2 = -1 and S(n, x) := U(n, x/2) Chebyshev's polynomials of the second kind. See A049310. S(-1, x) = 0.
a(n) = Sum_{i=0..n} Sum_{j=0..n} Fibonacci(i+j)*n!/(i!j!(n-i-j)!)/2. - Paul Barry, Feb 06 2004
E.g.f.: exp(2*x)*sinh(sqrt(5)*x)/sqrt(5). - Vladeta Jovovic, Sep 01 2004
a(n) = F(1) + F(4) + F(7) + ... + F(3n-2), for n > 0.
Conjecture: 2a(n+1) = a(n+2) - A001077(n+1). - Creighton Dement, Nov 28 2004
a(n) = Sum_{k=0..n} Sum_{j=0..n} C(n, j)*C(j, k)*F(j)/2. - Paul Barry, Feb 14 2005
a(n) = A048876(n) - A048875(n). - Creighton Dement, Mar 19 2005
Let M = {{0, 1}, {1, 4}}, v[1] = {0, 1}, v[n] = M.v[n - 1]; then a(n) = v[n][[1]]. - Roger L. Bagula, May 29 2005
a(n) = F(n, 4), the n-th Fibonacci polynomial evaluated at x=4. - T. D. Noe, Jan 19 2006
[A015448(n), a(n)] = [1,4; 1,3]^n * [1,0]. - Gary W. Adamson, Mar 21 2008
a(n) = (Sum_{k=0..n} Fibonacci(3*k-2)) + 1. - Gary Detlefs, Dec 26 2010
a(n) = (3*(-1)^n*F(n) + 5*F(n)^3)/2, n >= 0. See the general D. Jennings formula given in a comment on triangle A111125, where also the reference is given. Here the second (k=1) row [3,1] applies. - Wolfdieter Lang, Sep 01 2012
Sum_{k>=1} (-1)^(k-1)/(a(k)*a(k+1)) = (Sum_{k>=1} (-1)^(k-1)/(F_k*F_(k+1)))^3 = phi^(-3), where F_n is the n-th Fibonacci numbers (A000045) and phi is golden ratio (A001622). - Vladimir Shevelev, Feb 23 2013
G.f.: Q(0)*x/(2-4*x), where Q(k) = 1 + 1/(1 - x*(5*k-4)/(x*(5*k+1) - 2/Q(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Oct 11 2013
a(-n) = -(-1)^n * a(n). - Michael Somos, Feb 23 2014
The o.g.f. A(x) = x/(1 - 4*x - x^2) satisfies A(x) + A(-x) + 8*A(x)*A(-x) = 0 or equivalently (1 + 8*A(x))*(1 + 8*A(-x)) = 1. The o.g.f. for A049660 equals -A(sqrt(x))*A(-sqrt(x)). - Peter Bala, Apr 02 2015
From Rogério Serôdio, Mar 30 2018: (Start)
Some properties:
(1) a(n)*a(n+1) = 4*Sum_{k=1..n} a(k)^2;
(2) a(n)^2 + a(n+1)^2 = a(2*n+1);
(3) a(n)^2 - a(n-2)^2 = 4*a(n-1)*(a(n) + a(n-2));
(4) a(m*(p+1)) = a(m*p)*a(m+1) + a(m*p-1)*a(m);
(5) a(n-k)*a(n+k) = a(n)^2 + (-1)^(n+k+1)*a(k)^2;
(6) a(n-1)*a(n+1) = a(n)^2 + (-1)^n (particular case of (5)!);
(7) a(2*n) = 2*a(n)*(2*a(n) + a(n-1));
(8) 3*Sum_{k=2..n+1} a(k)*a(k-1) is equal to a(n+1)^2 if n odd, and is equal to a(n+1)^2 - 1 if n is even;
(9) a(n) - a(n-2*k+1) = alpha(k)*a(n-2*k+1) + a(n-4*k+2), where alpha(k) = (2+sqrt(5))^(2*k-1) + (2-sqrt(5))^(2*k-1);
(10) 31|Sum_{k=n..n+9} a(k), for all positive n. (End)
O.g.f.: x*exp(Sum_{n >= 1} Lucas(3*n)*x^n/n) = x + 4*x^2 + 17*x^3 + .... - Peter Bala, Oct 11 2019
a(n) = Sum_{k=0..floor(n/2)} 4^(n-2*k-1)*C(n-k-1,n-2*k-1). - Vladimir Kruchinin, Oct 02 2022
a(n) = i^(n-1)*S(n-1, -4*i), with i = sqrt(-1), and the Chebyshev S-polynomials (see A049310) with S(n, -1) = 0. - Gary Detlefs and Wolfdieter Lang, Mar 06 2023
G.f.: x/(1 - 4*x - x^2) = Sum_{n >= 0} x^(n+1) * ( Product_{k = 1..n} (m*k + 4 - m + x)/(1 + m*k*x) ) for arbitrary m (a telescoping series). - Peter Bala, May 08 2024
a(n) = 4^(n-1)*hypergeom([(1-n)/2, 1-n/2], [1-n], -1/4) for n > 0. - Peter Luschny, Mar 30 2025
a(n) = a(n-1) + A110679(n-1) + A110679(n-2) = a(n-1) + Fibonacci(3*n-2). - Greg Dresden and Yilin Zhu, Jul 10 2025

A172236 Array A(n,k) = n*A(n,k-1) + A(n,k-2) read by upward antidiagonals, starting A(n,0) = 0, A(n,1) = 1.

Original entry on oeis.org

0, 0, 1, 0, 1, 1, 0, 1, 2, 2, 0, 1, 3, 5, 3, 0, 1, 4, 10, 12, 5, 0, 1, 5, 17, 33, 29, 8, 0, 1, 6, 26, 72, 109, 70, 13, 0, 1, 7, 37, 135, 305, 360, 169, 21, 0, 1, 8, 50, 228, 701, 1292, 1189, 408, 34, 0, 1, 9, 65, 357, 1405, 3640, 5473, 3927, 985, 55, 0, 1, 10, 82, 528, 2549, 8658, 18901, 23184, 12970, 2378, 89, 0, 1, 11, 101, 747, 4289, 18200, 53353, 98145, 98209, 42837, 5741, 144
Offset: 1

Views

Author

Roger L. Bagula, Jan 29 2010

Keywords

Comments

Equals A073133 with an additional column A(.,0).
If the first column and top row are deleted, antidiagonal reading yields A118243.
Adding a top row of 1's and antidiagonal reading downwards yields A157103.
Antidiagonal sums are 0, 1, 2, 5, 12, 32, 93, 297, 1035, 3911, 15917, 69350, ....
From Jianing Song, Jul 14 2018: (Start)
All rows have strong divisibility, that is, gcd(A(n,k_1), A(n,k_2)) = A(n,gcd(k_1,k_2)) holds for all k_1, k_2 >= 0.
Let E(n,m) be the smallest number l such that m divides A(n,l), we have: for odd primes p that are not divisible by n^2 + 4, E(n,p) divides p - ((n^2+4)/p) if p == 3 (mod 4) and (p - ((n^2+4)/p))/2 if p == 1 (mod 4). E(n,p) = p for odd primes p that are divisible by n^2 + 4. E(n,2) = 2 for even n and 3 for odd n. Here ((n^2+4)/p) is the Legendre symbol. A prime p such that p^2 divides T(n,E(n,p)) is called an n-Wall-Sun-Sun prime.
E(n,p^e) <= p^(e-1)*E(n,p) for all primes p. If p^2 does not divide A(n, E(n,p)), then E(n,p^e) = p^(e-1)*E(n,p) for all exponent e. Specially, for primes p >= 5 that are divisible by n^2 + 4, p^2 is never divisible by A(n,p), so E(n,p^e) = p^e as described above. E(n,m_1*m_2) = lcm(E(n,m_1),E(n,m_2)) if gcd(m_1,m_2) = 1.
Let pi(n,m) be the Pisano period of A(n, k) modulo m, i.e, the smallest number l such that A(n, k+1) == T(n,k) (mod m) holds for all k >= 0, we have: for odd primes p that are not divisible by n^2 - 4, pi(n,p) divides p - 1 if ((n^2+4)/p) = 1 and 2(p+1) if ((n^2+4)/p) = -1. pi(n,p) = 4p for odd primes p that are divisible by n^2 + 4. pi(n,2) = 2 even n and 3 for odd n.
pi(n,p^e) <= p^(e-1)*pi(n,p) for all primes p. If p^2 does not divide A(n, E(n,p)), then pi(n,p^e) = p^(e-1)*pi(n,p) for all exponent e. Specially, for primes p >= 5 that are divisible by n^2 + 4, p^2 is never divisible by A(n, p), so pi(n,p^e) = 4p^e as described above. pi(n,m_1*m_2) = lcm(pi(n,m_1), pi(n,m_2)) if gcd(m_1,m_2) = 1.
If n != 2, the largest possible value of pi(n,m)/m is 4 for even n and 6 for odd n. For even n, pi(n,p^e) = 4p^e; for odd n, pi(n,2p^e) = 12p^e, where p is any odd prime factor of n^2 + 4. For n = 2 it is 8/3, obtained by m = 3^e.
Let z(n,m) be the number of zeros in a period of A(n, k) modulo m, i.e., z(n,m) = pi(n,m)/E(n,m), then we have: z(n,p) = 4 for odd primes p that are divisible by n^2 + 4. For other odd primes p, z(n,p) = 4 if E(n,p) is odd; 1 if E(n,p) is even but not divisible by 4; 2 if E(n,p) is divisible by 4; see the table below. z(n,2) = z(n,4) = 1.
Among all values of z(n,p) when p runs through all odd primes that are not divisible by n^2 + 4, we have:
((n^2+4)/p)...p mod 8....proportion of 1.....proportion of 2.....proportion of 4
......1..........1......1/6 (conjectured)...2/3 (conjectured)...1/6 (conjectured)*
......1..........5......1/2 (conjectured)...........0...........1/2 (conjectured)*
......1.........3,7.............1...................0...................0
.....-1.........1,5.............0...................0...................1
.....-1.........3,7.............0...................1...................0
* The result is that among all odd primes that are not divisible by n^2 + 4, 7/24 of them are with z(n,p) = 1, 5/12 are with z(n,p) = 2 and 7/24 are with z(n,p) = 4 if n^2 + 4 is a twice a square; 1/3 of them are with z(n,p) = 1, 1/3 are with z(n,p) = 2 and 1/3 are with z(n,p) = 4 otherwise. [Corrected by Jianing Song, Jul 06 2019]
z(n,p^e) = z(n,p) for all odd primes p; z(n,2^e) = 1 for even n and 2 for odd n, e >= 3.
(End)
From Michael A. Allen, Mar 06 2023: (Start)
Removing the first (n=0) row of A352361 gives this sequence.
Row n is the n-metallonacci sequence.
A(n,k) is (for k>0) the number of tilings of a (k-1)-board (a board with dimensions (k-1) X 1) using unit squares and dominoes (with dimensions 2 X 1) if there are n kinds of squares available. (End)

Examples

			The array, A(n, k), starts in row n = 1 with columns k >= 0 as
  0      1      1      2      3      5      8
  0      1      2      5     12     29     70
  0      1      3     10     33    109    360
  0      1      4     17     72    305   1292
  0      1      5     26    135    701   3640
  0      1      6     37    228   1405   8658
  0      1      7     50    357   2549  18200
  0      1      8     65    528   4289  34840
  0      1      9     82    747   6805  61992
  0      1     10    101   1020  10301 104030
  0      1     11    122   1353  15005 166408
Antidiagonal triangle, T(n, k), begins as:
  0;
  0, 1;
  0, 1, 1;
  0, 1, 2,  2;
  0, 1, 3,  5,   3;
  0, 1, 4, 10,  12,   5;
  0, 1, 5, 17,  33,  29,    8;
  0, 1, 6, 26,  72, 109,   70,   13;
  0, 1, 7, 37, 135, 305,  360,  169,  21;
  0, 1, 8, 50, 228, 701, 1292, 1189, 408, 34;
		

Crossrefs

Rows n include: A000045 (n=1), A000129 (n=2), A006190 (n=3), A001076 (n=4), A052918 (n=5), A005668 (n=6), A054413 (n=7), A041025 (n=8), A099371 (n=9), A041041 (n=10), A049666 (n=11), A041061 (n=12), A140455 (n=13), A041085 (n=14), A154597 (n=15), A041113 (n=16), A178765 (n=17), A041145 (n=18), A243399 (n=19), A041181 (n=20). (Note that there are offset shifts for rows n = 5, 7, 8, 10, 12, 14, 16..20.)
Columns k include: A000004 (k=0), A000012 (k=1), A000027 (k=2), A002522 (k=3), A054602 (k=4), A057721 (k=5), A124152 (k=6).
Entry points for A(n,k) modulo m: A001177 (n=1), A214028 (n=2), A322907 (n=3).
Pisano period for A(n,k) modulo m: A001175 (n=1), A175181 (n=2), A175182 (n=3), A175183 (n=4), A175184 (n=5), A175185 (n=6).
Number of zeros in a period for A(n,k) modulo m: A001176 (n=1), A214027 (n=2), A322906 (n=3).
Sums include: A304357, A304359.
Similar to: A073133.

Programs

  • Magma
    A172236:= func< n,k | k le 1 select k else Evaluate(DicksonSecond(k-1,-1), n-k) >;
    [A172236(n,k): k in [0..n-1], n in [1..13]]; // G. C. Greubel, Sep 29 2024
    
  • Mathematica
    A172236[n_,k_]:=Fibonacci[k, n-k];
    Table[A172236[n, k], {n,15}, {k,0,n-1}]//Flatten
  • PARI
    A(n, k) = if (k==0, 0, if (k==1, 1, n*A(n, k-1) + A(n, k-2)));
    tabl(nn) = for(n=1, nn, for (k=0, nn, print1(A(n, k), ", ")); print); \\ Jianing Song, Jul 14 2018 (program from Michel Marcus; see also A316269)
    
  • PARI
    A(n, k) = ([n, 1; 1, 0]^k)[2, 1] \\ Jianing Song, Nov 10 2018
    
  • SageMath
    def A172236(n,k): return sum(binomial(k-j-1,j)*(n-k)^(k-2*j-1) for j in range(1+(k-1)//2))
    flatten([[A172236(n,k) for k in range(n)] for n in range(1,14)]) # G. C. Greubel, Sep 29 2024

Formula

A(n,k) = (((n + sqrt(n^2 + 4))/2)^k - ((n-sqrt(n^2 + 4))/2)^k)/sqrt(n^2 + 4), n >= 1, k >= 0. - Jianing Song, Jun 27 2018
For n >= 1, Sum_{i=1..k} 1/A(n,2^i) = ((u^(2^k-1) + v^(2^k-1))/(u + v)) * (1/A(n,2^k)), where u = (n + sqrt(n^2 + 4))/2, v = (n - sqrt(n^2 + 4))/2 are the two roots of the polynomial x^2 - n*x - 1. As a result, Sum_{i>=1} 1/A(n,2^i) = (n^2 + 4 - n*sqrt(n^2 + 4))/(2*n). - Jianing Song, Apr 21 2019
From G. C. Greubel, Sep 29 2024: (Start)
A(n, k) = F_{k}(n) (Fibonacci polynomials F_{n}(x)) (array).
T(n, k) = F_{k}(n-k) (antidiagonal triangle).
Sum_{k=0..n-1} T(n, k) = A304357(n) - (1-(-1)^n)/2.
Sum_{k=0..n-1} (-1)^k*T(n, k) = (-1)*A304359(n) + (1-(-1)^n)/2.
T(2*n, n) = A084844(n).
T(2*n+1, n+1) = A084845(n). (End)

Extensions

More terms from Jianing Song, Jul 14 2018

A052918 a(0) = 1, a(1) = 5, a(n+1) = 5*a(n) + a(n-1).

Original entry on oeis.org

1, 5, 26, 135, 701, 3640, 18901, 98145, 509626, 2646275, 13741001, 71351280, 370497401, 1923838285, 9989688826, 51872282415, 269351100901, 1398627786920, 7262490035501, 37711077964425, 195817879857626
Offset: 0

Views

Author

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

Keywords

Comments

A087130(n)^2 - 29*a(n-1)^2 = 4*(-1)^n, n >= 1. - Gary W. Adamson, Jul 01 2003, corrected Oct 07 2008, corrected by Jianing Song, Feb 01 2019
a(p-1) == 29^((p-1)/2) (mod p), for odd primes p. - Gary W. Adamson, Feb 22 2009 [See A087475 for more info about this congruence. - Jason Yuen, Apr 05 2025]
For more information about this type of recurrence, follow the Khovanova link and see A054413, A086902 and A178765. - Johannes W. Meijer, Jun 12 2010
Binomial transform of A015523. - Johannes W. Meijer, Aug 01 2010
For positive n, a(n) equals the permanent of the n X n tridiagonal matrix with 5's along the main diagonal and 1's along the superdiagonal and the subdiagonal. - John M. Campbell, Jul 08 2011
a(n) equals the number of words of length n on alphabet {0,1,...,5} avoiding runs of zeros of odd lengths. - Milan Janjic, Jan 28 2015
From Michael A. Allen, Feb 15 2023: (Start)
Also called the 5-metallonacci sequence; the g.f. 1/(1-k*x-x^2) gives the k-metallonacci sequence.
a(n) is the number of tilings of an n-board (a board with dimensions n X 1) using unit squares and dominoes (with dimensions 2 X 1) if there are 5 kinds of squares available. (End)

Crossrefs

Row 5 of A073133, A172236, and A352361.
Cf. A087130, A099365 (squares), A100237, A175184 (Pisano periods), A201005 (prime subsequence).

Programs

  • GAP
    a:=[1,5];; for n in [3..30] do a[n]:=5*a[n-1]+a[n-2]; od; a; # G. C. Greubel, Oct 16 2019
  • Magma
    I:=[1, 5]; [n le 2 select I[n] else 5*Self(n-1)+Self(n-2): n in [1..30]]; // Vincenzo Librandi, Feb 23 2013
    
  • Magma
    R:=PowerSeriesRing(Integers(), 22); Coefficients(R!( 1/(1 - 5*x - x^2) )); // Marius A. Burtea, Oct 16 2019
    
  • Maple
    spec := [S,{S=Sequence(Union(Z,Z,Z,Z,Z,Prod(Z,Z)))},unlabeled]: seq(combstruct[count](spec,size=n), n=0..30);
    a[0]:=1: a[1]:=5: for n from 2 to 26 do a[n]:=5*a[n-1]+a[n-2] od: seq(a[n], n=0..30); # Zerinvary Lajos, Jul 26 2006
    with(combinat):a:=n->fibonacci(n,5):seq(a(n),n=1..30); # Zerinvary Lajos, Dec 07 2008
  • Mathematica
    LinearRecurrence[{5, 1}, {1, 5}, 30] (* Vincenzo Librandi, Feb 23 2013 *)
    Table[Fibonacci[n+1, 5], {n,0,30}] (* Vladimir Reshetnikov, May 08 2016 *)
  • PARI
    Vec(1/(1-5*x-x^2)+O(x^30)) \\ Charles R Greathouse IV, Nov 20 2011
    
  • Sage
    [lucas_number1(n,5,-1) for n in range(1, 22)] # Zerinvary Lajos, Apr 24 2009
    

Formula

G.f.: 1/(1 - 5*x - x^2).
a(3n) = A041047(5n), a(3n+1) = A041047(5n+3), a(3n+2) = 2*A041047(5n+4). - Henry Bottomley, May 10 2000
a(n) = Sum_{alpha=RootOf(-1+5*z+z^2)} (1/29)*(5+2*alpha)*alpha^(-1-n).
a(n-1) = (((5 + sqrt(29))/2)^n - ((5 - sqrt(29))/2)^n)/sqrt(29). - Gary W. Adamson, Jul 01 2003
a(n) = U(n, 5*i/2)*(-i)^n with i^2 = -1 and Chebyshev's U(n, x/2) = S(n, x) polynomials. See triangle A049310.
Let M = {{0, 1}, {1, 5}}, then a(n) is the lower-right term of M^n. - Roger L. Bagula, May 29 2005
a(n) = F(n, 5), the n-th Fibonacci polynomial evaluated at x = 5. - T. D. Noe, Jan 19 2006
a(n) = denominator of n-th convergent to [1, 4, 5, 5, 5, ...], for n > 0. Continued fraction [1, 4, 5, 5, 5, ...] = 0.807417596..., the inradius of a right triangle with legs 2 and 5. n-th convergent = A100237(n)/A052918(n), the first few being: 1/1, 4/5, 21/26, 109/135, 566/701, ... - Gary W. Adamson, Dec 21 2007
From Johannes W. Meijer, Jun 12 2010: (Start)
a(2n+1) = 5*A097781(n), a(2n) = A097835(n).
Limit_{k->oo} a(n+k)/a(k) = (A087130(n) + a(n-1)*sqrt(29))/2.
Limit_{n->oo} A087130(n)/a(n-1) = sqrt(29). (End)
From L. Edson Jeffery, Jan 07 2012: (Start)
Define the 2 X 2 matrix A = {{1, 1}, {5, 4}}. Then:
a(n) is the upper-left term of (1/5)*(A^(n+2) - A^(n+1));
a(n) is the upper-right term of A^(n+1);
a(n) is the lower-left term of (1/5)*A^(n+1);
a(n) is the lower-right term of (Sum_{k=0..n} A^k). (End)
Sum_{n>=0} (-1)^n/(a(n)*a(n+1)) = (sqrt(29) - 5)/2. - Vladimir Shevelev, Feb 23 2013
G.f.: x/(1 - 5*x - x^2) = Sum_{n >= 0} x^(n+1) *( Product_{k = 1..n} (m*k + 5 - m + x)/(1 + m*k*x) ) for arbitrary m (a telescoping series). - Peter Bala, May 08 2024

A352361 Array read by ascending antidiagonals. A(n, k) = Fibonacci(k, n), where Fibonacci(n, x) are the Fibonacci polynomials.

Original entry on oeis.org

0, 0, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 2, 2, 0, 0, 1, 3, 5, 3, 1, 0, 1, 4, 10, 12, 5, 0, 0, 1, 5, 17, 33, 29, 8, 1, 0, 1, 6, 26, 72, 109, 70, 13, 0, 0, 1, 7, 37, 135, 305, 360, 169, 21, 1, 0, 1, 8, 50, 228, 701, 1292, 1189, 408, 34, 0, 0, 1, 9, 65, 357, 1405, 3640, 5473, 3927, 985, 55, 1
Offset: 0

Views

Author

Peter Luschny, Mar 18 2022

Keywords

Comments

From Michael A. Allen, Mar 26 2023: (Start)
Row n is the n-metallonacci sequence for n>0.
A(n,k), for n > 0 and k > 0, is the number of tilings of a (k-1)-board (a board with dimensions (k-1) X 1) using unit squares and dominoes (with dimensions 2 X 1) if there are n kinds of squares available. (End)

Examples

			Array, A(n,k), starts:
  n\k 0, 1, 2,  3,   4,    5,     6,      7,       8,        9, ...
  -------------------------------------------------------------------------
  [0] 0, 1, 0,  1,   0,    1,     0,      1,       0,        1, ... A000035;
  [1] 0, 1, 1,  2,   3,    5,     8,     13,      21,       34, ... A000045;
  [2] 0, 1, 2,  5,  12,   29,    70,    169,     408,      985, ... A000129;
  [3] 0, 1, 3, 10,  33,  109,   360,   1189,    3927,    12970, ... A006190;
  [4] 0, 1, 4, 17,  72,  305,  1292,   5473,   23184,    98209, ... A001076;
  [5] 0, 1, 5, 26, 135,  701,  3640,  18901,   98145,   509626, ... A052918;
  [6] 0, 1, 6, 37, 228, 1405,  8658,  53353,  328776,  2026009, ... A005668;
  [7] 0, 1, 7, 50, 357, 2549, 18200, 129949,  927843,  6624850, ... A054413;
  [8] 0, 1, 8, 65, 528, 4289, 34840, 283009, 2298912, 18674305, ... A041025;
  [9] 0, 1, 9, 82, 747, 6805, 61992, 564733, 5144589, 46866034, ... A099371;
      |  |  |  | A054602 |   A124152;
      |  |  |  A002522   A057721;
      |  |  A001477;
      |  A000012;
      A000004;
Antidiagonals, T(n, k), begin as:
  0;
  0, 1;
  0, 1, 0;
  0, 1, 1,  1;
  0, 1, 2,  2,   0;
  0, 1, 3,  5,   3,   1;
  0, 1, 4, 10,  12,   5,   0;
  0, 1, 5, 17,  33,  29,   8,   1;
  0, 1, 6, 26,  72, 109,  70,  13,  0;
  0, 1, 7, 37, 135, 305, 360, 169, 21, 1;
		

Crossrefs

Other versions of this array are A073133, A157103, A172236.
Rows n: A000035 (n=0), A000045 (n=1), A000129 (n=2), A006190 (n=3), A001076 (n=4), A052918 (n=5), A005668 (n=6), A054413 (n=7), A041025 (n=8), A099371 (n=9).
Columns k: A000004 (k=0), A000012 (k=1), A001477 (k=2), A002522 (k=3), A054602 (k=4), A057721 (k=5), A124152 (k=6).
Cf. A084844 (main diagonal), A352362 (Lucas polynomials), A350470 (Jacobsthal polynomials).
Sums include: A304357 (row sums), A304359.
Cf. A084845.

Programs

  • Magma
    A352361:= func< n, k | k le 1 select k else Evaluate(DicksonSecond(k-1, -1), n-k) >;
    [A352361(n, k): k in [0..n], n in [0..13]]; // G. C. Greubel, Sep 29 2024
    
  • Maple
    seq(seq(combinat:-fibonacci(k, n - k), k = 0..n), n = 0..11);
  • Mathematica
    Table[Fibonacci[k, n - k], {n, 0, 9}, {k, 0, n}] // Flatten
    (* or *)
    A[n_, k_] := With[{s = Sqrt[n^2 + 4]}, ((n + s)^k - (n - s)^k) / (2^k*s)];
    Table[Simplify[A[n, k]], {n, 0, 9}, {k, 0, 9}] // TableForm
  • PARI
    A(n, k) = ([1, k; 1, k-1]^n)[2, 1] ;
    export(A)
    for(k = 0, 9, print(parvector(10, n, A(n - 1, k))))
    
  • SageMath
    def A352361(n, k): return lucas_number1(k,n-k,-1)
    flatten([[A352361(n, k) for k in range(n+1)] for n in range(14)]) # G. C. Greubel, Sep 29 2024

Formula

A(n, k) = Sum_{j=0..floor((k-1)/2)} binomial(k-j-1, j)*n^(k-2*j-1).
A(n, k) = ((n + s)^k - (n - s)^k) / (2^k*s) where s = sqrt(n^2 + 4).
A(n, k) = [x^k] (x / (1 - n*x - x^2)).
A(n, k) = n^(k-1)*hypergeom([1 - k/2, 1/2 - k/2], [1 - k], -4/n^2) for n,k >= 1.
A(n, n) = T(2*n, n) = A084844(n).
From G. C. Greubel, Sep 29 2024: (Start)
T(n, k) = A(n-k, k) (antidiagonal triangle).
T(2*n+1, n+1) = A084845(n).
Sum_{k=0..n} T(n, k) = A304357(n) (row sums).
Sum_{k=0..n} (-1)^k*T(n, k) = (-1)*A304359(n). (End)

A054413 a(n) = 7*a(n-1) + a(n-2), with a(0)=1 and a(1)=7.

Original entry on oeis.org

1, 7, 50, 357, 2549, 18200, 129949, 927843, 6624850, 47301793, 337737401, 2411463600, 17217982601, 122937341807, 877779375250, 6267392968557, 44749530155149, 319514104054600, 2281348258537349, 16288951913816043, 116304011655249650, 830417033500563593
Offset: 0

Views

Author

Henry Bottomley, May 10 2000

Keywords

Comments

In general, sequences with recurrence a(n) = k*a(n-1) + a(n-2) and a(0)=1 (and a(-1)=0) have the generating function 1/(1-k*x-x^2). If k is odd (k>=3) they satisfy a(3n) = b(5n), a(3n+1) = b(5n+3), a(3n+2) = 2*b(5n+4) where b(n) is the sequence of denominators of continued fraction convergents to sqrt(k^2+4). [If k is even then a(n) is the sequence of denominators of continued fraction convergents to sqrt(k^2/4+1).]
a(p-1) == 53^((p-1)/2) (mod p), for odd primes p. - Gary W. Adamson, Feb 22 2009 [See A087475 for more info about this congruence. - Jason Yuen, Apr 05 2025]
From Johannes W. Meijer, Jun 12 2010: (Start)
For the sequence given above k=7 which implies that it is associated with A041091.
For a similar statement about sequences with recurrence a(n) = k*a(n-1) + a(n-2) but with a(0) = 2, and a(-1) = 0, see A086902; a sequence that is associated with A041090.
For more information follow the Khovanova link and see A087130, A140455 and A178765.
(End)
For positive n, a(n) equals the permanent of the n X n tridiagonal matrix with 7's along the main diagonal and 1's along the superdiagonal and the subdiagonal. - John M. Campbell, Jul 08 2011
a(n) equals the number of words of length n on alphabet {0,1,...,7} avoiding runs of zeros of odd lengths. - Milan Janjic, Jan 28 2015
From Michael A. Allen, Feb 21 2023: (Start)
Also called the 7-metallonacci sequence; the g.f. 1/(1-k*x-x^2) gives the k-metallonacci sequence.
a(n) is the number of tilings of an n-board (a board with dimensions n X 1) using unit squares and dominoes (with dimensions 2 X 1) if there are 7 kinds of squares available. (End)

Crossrefs

Row n=7 of A073133, A172236 and A352361.
Cf. A099367 (squares).

Programs

Formula

a(3n) = A041091(5n), a(3n+1) = A041091(5n+3), a(3n+2) = 2*A041091(5n+4).
G.f.: 1/(1 - 7x - x^2).
a(n) = U(n, 7*i/2)*(-i)^n with i^2=-1 and Chebyshev's U(n, x/2) = S(n, x) polynomials. See A049310.
a(n) = F(n, 7), the n-th Fibonacci polynomial evaluated at x=7. - T. D. Noe, Jan 19 2006
From Sergio Falcon, Sep 24 2007: (Start)
a(n) = (sigma^n - (-sigma)^(-n))/(sqrt(53)) with sigma = (7+sqrt(53))/2;
a(n) = Sum_{i=0..floor((n-1)/2)} binomial(n-1-i,i)*7^(n-1-2i). (End)
a(n) = ((7 + sqrt(53))^n - (7 - sqrt(53))^n)/(2^n*sqrt(53)). Offset 1. a(3)=50. - Al Hakanson (hawkuu(AT)gmail.com), Jan 17 2009
From Johannes W. Meijer, Jun 12 2010: (Start)
a(2n+1) = 7*A097836(n), a(2n) = A097838(n).
Lim_{k->oo} a(n+k)/a(k) = (A086902(n) + A054413(n-1)*sqrt(53))/2.
Lim_{n->oo} A086902(n)/A054413(n-1) = sqrt(53).
(End)
Sum_{n>=0} (-1)^n/(a(n)*a(n+1)) = (sqrt(53)-7)/2. - Vladimir Shevelev, Feb 23 2013
From Kai Wang, Feb 24 2020: (Start)
Sum_{m>=0} 1/(a(m)*a(m+2)) = 1/49.
Sum_{m>=0} 1/(a(2*m)*a(2*m+2)) = (sqrt(53)-7)/14.
In general, for sequences with recurrence f(n)= k*f(n-1)+f(n-2) and f(0)=1,
Sum_{m>=0} 1/(f(m)*f(m+2)) = 1/(k^2).
Sum_{m>=0} 1/(f(2*m)*f(2*m+2)) = (sqrt(k^2+4) - k)/(2*k). (End)
E.g.f.: (1/53)*exp(7*x/2)*(53*cosh(sqrt(53)*x/2) + 7*sqrt(53)*sinh(sqrt(53)*x/2)). - Stefano Spezia, Feb 26 2020
G.f.: x/(1 - 7*x - x^2) = Sum_{n >= 0} x^(n+1) *( Product_{k = 1..n} (m*k + 7 - m + x)/(1 + m*k*x) ) for arbitrary m (a telescoping series). - Peter Bala, May 08 2024

Extensions

Formula corrected by Johannes W. Meijer, May 30 2010, Jun 02 2010
Extended by T. D. Noe, May 23 2011

A005668 Denominators of continued fraction convergents to sqrt(10).

Original entry on oeis.org

0, 1, 6, 37, 228, 1405, 8658, 53353, 328776, 2026009, 12484830, 76934989, 474094764, 2921503573, 18003116202, 110940200785, 683644320912, 4212806126257, 25960481078454, 159975692596981, 985814636660340, 6074863512559021, 37434995712014466, 230684837784645817
Offset: 0

Views

Author

Keywords

Comments

a(2*n+1) with b(2*n+1) := A005667(2*n+1), n >= 0, give all (positive integer) solutions to Pell equation b^2 - 10*a^2 = -1, a(2*n) with b(2*n) := A005667(2*n), n>=1, give all (positive integer) solutions to Pell equation b^2 - 10*a^2 = +1 (cf. Emerson reference).
Bisection: a(2*n)= 6*S(n-1,2*19) = 6*A078987(n-1), n >= 0 and a(2*n+1) = A097315(n), n >= 0, with S(n,x) Chebyshev's polynomials of the second kind. S(-1,x)=0. See A049310.
Sqrt(10) = 6/2 + 6/37 + 6/(37*1405) + 6/(1405*53353) + ... - Gary W. Adamson, Dec 21 2007
a(p) == 40^((p-1)/2) mod p, for odd primes p. - Gary W. Adamson, Feb 22 2009
For n>=2, a(n) equals the permanent of the (n-1)X(n-1) tridiagonal matrix with 6's along the main diagonal and 1's along the superdiagonal and the subdiagonal. - John M. Campbell, Jul 08 2011
For n>=1, a(n) equals the number of words of length n-1 on alphabet {0,1,...,6} avoiding runs of zeros of odd lengths. - Milan Janjic, Jan 28 2015
From Michael A. Allen, Feb 15 2023: (Start)
Also called the 6-metallonacci sequence; the g.f. 1/(1-k*x-x^2) gives the k-metallonacci sequence.
a(n+1) is the number of tilings of an n-board (a board with dimensions n X 1) using unit squares and dominoes (with dimensions 2 X 1) if there are 6 kinds of squares available. (End)

Examples

			G.f. = x + 6*x^2 + 37*x^3 + 228*x^4 + 1405*x^5 + 8658*x^6 + 53353*x^7 + ...
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Row n=6 of A073133, A172236, A352361.

Programs

  • Magma
    [n le 2 select n-1 else 6*Self(n-1)+Self(n-2): n in [1..25]]; // Vincenzo Librandi, Feb 23 2013
    
  • Maple
    evalf(sqrt(10),200); convert(%,confrac,fractionlist); fractionlist;
    A005668:=-z/(-1+6*z+z**2); - Simon Plouffe in his 1992 dissertation.
    a := n -> `if`(n<2,n,6^(n-1)*hypergeom([1-n/2,(1-n)/2], [1-n], -1/9)):
    seq(simplify(a(n)), n=0..23); # Peter Luschny, Jun 28 2017
  • Mathematica
    LinearRecurrence[{6,1}, {0,1}, 30] (* Vincenzo Librandi, Feb 23 2013 *)
    a[ n_] := (-I)^(n - 1) ChebyshevU[ n - 1, 3 I]; (* Michael Somos, May 28 2014 *)
    a[ n_] := MatrixPower[ {{0, 1}, {1, 6}}, n + 1][[1, 1]]; (* Michael Somos, May 28 2014 *)
    Fibonacci[Range[0,30],6] (* G. C. Greubel, Jun 06 2019 *)
    Join[{0},Convergents[Sqrt[10],30]//Denominator] (* Harvey P. Dale, Dec 28 2022 *)
  • PARI
    {a(n) = ([0, 1; 1, 6]^(n+1)) [1, 1]}; /* Michael Somos, May 28 2014 */
    
  • PARI
    {a(n) = (-I)^(n-1) * polchebyshev( n-1, 2, 3*I)}; /* Michael Somos, May 28 2014 */
  • Sage
    from sage.combinat.sloane_functions import recur_gen3; it = recur_gen3(0,1,6,6,1,0); [next(it) for i in range(1,22)] # Zerinvary Lajos, Jul 09 2008
    
  • Sage
    [lucas_number1(n,6,-1) for n in range(0, 21)]# Zerinvary Lajos, Apr 24 2009
    

Formula

G.f.: x / (1 - 6*x - x^2).
a(n) = 6*a(n-1) + a(n-2).
a(n) = ((-i)^(n-1))*S(n-1, 3*i) with S(n, x) Chebyshev's polynomials of the second kind (see A049310) and i^2=-1.
a(n) = F(n, 6), the n-th Fibonacci polynomial evaluated at x=6. - T. D. Noe, Jan 19 2006
From Sergio Falcon, Sep 24 2007: (Start)
a(n) = ((3+sqrt(10))^n - (3-sqrt(10))^n)/(2*sqrt(10)).
a(n) = Sum_{i=0..floor((n-1)/2)} binomial(n-1-i,i)*6^(n-1-2*i). (End)
Sum_{n>=1}(-1)^(n-1)/(a(n)*a(n+1)) = sqrt(10) - 3. - Vladimir Shevelev, Feb 23 2013
a(-n) = -(-1)^n * a(n). - Michael Somos, May 28 2014
a(n) = 6^(n-1)*hypergeom([1-n/2, (1-n)/2], [1-n], -1/9) for n >= 2. - Peter Luschny, Jun 28 2017
G.f.: x/(1 - 6*x - x^2) = Sum_{n >= 0} x^(n+1) *( Product_{k = 1..n} (m*k + 6 - m + x)/(1 + m*k*x) ) for arbitrary m (a telescoping series). - Peter Bala, May 08 2024

Extensions

Chebyshev comments from Wolfdieter Lang, Jan 21 2003

A157103 Array A(n, k) = Fibonacci(n+1, k), with A(n, 0) = A(n, n) = 1, read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 3, 5, 3, 1, 1, 5, 12, 10, 4, 1, 1, 8, 29, 33, 17, 5, 1, 1, 13, 70, 109, 72, 26, 6, 1, 1, 21, 169, 360, 305, 135, 37, 7, 1, 1, 34, 408, 1189, 1292, 701, 228, 50, 8, 1, 1, 55, 985, 3927, 5473, 3640, 1405, 357, 65, 9, 1
Offset: 0

Views

Author

Gary W. Adamson, Feb 22 2009

Keywords

Comments

From Michael A. Allen, Mar 30 2023: (Start)
Column k is the k-metallonacci sequence for k > 0.
T(n,k) is, for n > 0 and k > 0, the number of tilings of an n-board (a board with dimensions n X 1) using unit squares and dominoes (with dimensions 2 X 1) if there are k kinds of squares available. (End)

Examples

			Array begins:
  1,  1,   1,    1,     1,     1,      1,      1, ... (A000012);
  1,  1,   2,    3,     4,     5,      6,      7, ... (A000027);
  1,  2,   5,   10,    17,    26,     37,     50, ... (A002522);
  1,  3,  12,   33,    72,   135,    228,    357, ...;
  1,  5,  29,  109,   305,   701,   1405,   2549, ...;
  1,  8,  70,  360,  1292,  3640,   8658,  18200, ...;
  1, 13, 169, 1189,  5473, 18901,  53353, 129949, ...;
  1, 21, 408, 3927, 23184, 98145, 328776, 927843, ...;
  ...
First few rows of the triangle:
  1;
  1,   1;
  1,   1,    1;
  1,   2,    2,     1;
  1,   3,    5,     3,     1;
  1,   5,   12,    10,     4,     1;
  1,   8,   29,    33,    17,     5,     1;
  1,  13,   70,   109,    72,    26,     6,     1;
  1,  21,  169,   360,   305,   135,    37,     7,    1;
  1,  34,  408,  1189,  1292,   701,   228,    50,    8,   1;
  1,  55,  985,  3927,  5473,  3640,  1405,   357,   65,   9,   1;
  1,  89, 2378, 12970, 23184, 18901,  8658,  2549,  528,  82,  10,  1;
  1, 144, 5741, 42837, 98209, 98145, 53353, 18200, 4289, 747, 101, 11, 1;
  ...
Example: Column 3 = (1, 3, 10, 33, 109, 360, ...) = A006190.
		

Crossrefs

Essentially the transpose of A073133, A172236, A352361.

Programs

  • Magma
    A157103:= func< n,k | k eq 0 or k eq n select 1 else Evaluate(DicksonSecond(n, -1), k) >;
    [A157103(n-k, k): k in [0..n], n in [0..15]]; // G. C. Greubel, Jan 11 2022
    
  • Maple
    A157103 := proc(n,k)
        if k = 0 then
            1;
        else
            mul(k-2*I*cos(l*Pi/(n+1)),l=1..n) ;
            combine(%,trig) ;
            round(%) ;
        end if;
    end proc:
    seq( seq(A157103(d-k,k),k=0..d),d=0..12) ; # R. J. Mathar, Feb 27 2023
  • Mathematica
    (* First program *)
    T[, 0]=1; T[n, n_]=1; T[, ]=0;
    T[n_, k_] /; 0 <= k <= n := k T[n-1, k] + T[n-2, k];
    Table[T[n, k], {n, 0, 10}, {k, 0, n}]//Flatten (* Jean-François Alcover, Aug 07 2018 *)
    (* Second program *)
    T[n_, k_]:= If[k==0 || k==n, 1, Fibonacci[n-k+1, k]];
    Table[T[n, k], {n,0,15}, {k,0,n}]//Flatten (* G. C. Greubel, Jan 11 2022 *)
  • Sage
    def A157103(n,k): return 1 if (k==0 or k==n) else lucas_number1(n+1, k, -1)
    flatten([[A157103(n-k, k) for k in (0..n)] for n in (0..10)]) # G. C. Greubel, Jan 11 2022

Formula

A(n, k) = Fibonacci(n+1, k), with A(n, 0) = A(n, n) = 1 (array).
A(n, 1) = A000045(n+1).
T(n, k) = k*T(n-1, k) + T(n-2, k) with T(n, 0) = T(n, n) = 1 (triangle).
From G. C. Greubel, Jan 11 2022: (Start)
T(n, k) = Fibonacci(n-k+1, k), with T(n, 0) = T(n, n) = 1.
T(2*n, n) = A084845(n) for n >= 1, with T(0, 0) = 1.
T(2*n+1, n+1) = A084844(n). (End)

Extensions

Edited by G. C. Greubel, Jan 11 2022
Showing 1-10 of 56 results. Next