cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A073154 Triangle of numbers relating two sequences (A073157 and A073155).

Original entry on oeis.org

1, 2, 4, 5, 9, 14, 18, 28, 38, 56, 70, 106, 131, 167, 237, 293, 433, 523, 613, 753, 1046, 1283, 1869, 2219, 2543, 2893, 3479, 4762, 5808, 8374, 9839, 11099, 12359, 13824, 16390, 22198
Offset: 0

Views

Author

Paul D. Hanna, Jul 29 2002

Keywords

Examples

			a(4,0)=a(3,3)+a(2,2)=56+14=70.
a(5,2)=A073157(0)*A073157(5)+A073157(1)*A073157(4)+A073157(2)*A073157(3)= 1*293+2*70+5*18=523.
Rows:
  {1};
  {2,4};
  {5,9,14};
  {18,28,38,56};
  {70,106,131,167,237};
  {293,433,523,613,753,1046};
  {1283,1869,2219,2543,2893,3479,4762};
  ...
		

Crossrefs

Formula

Triangle {a(n, k), n >= 0, 0<=k<=n} defined by: a(0, 0)=1, a(n, 0)=A073157(n), a(n, n)=A073155(n+1), a(n, 0)=a(n-1, n-1) + a(n-2, n-2), a(n, k)=sum{j=0..k} A073157(j) * A073157(n-j).
G.f.: Sum_{n>=0, 0<=k<=n} a(n, k) x^n y^k = A(x*y)(A(x) - y A(x*y))/(1 - y) where A(x) = (1 - (1 - 4 x (1 + x)^2)^(1/2))/(2 x (1 + x)) is the o.g.f. for A073157. - David Callan, Aug 16 2006