A073154 Triangle of numbers relating two sequences (A073157 and A073155).
1, 2, 4, 5, 9, 14, 18, 28, 38, 56, 70, 106, 131, 167, 237, 293, 433, 523, 613, 753, 1046, 1283, 1869, 2219, 2543, 2893, 3479, 4762, 5808, 8374, 9839, 11099, 12359, 13824, 16390, 22198
Offset: 0
Examples
a(4,0)=a(3,3)+a(2,2)=56+14=70. a(5,2)=A073157(0)*A073157(5)+A073157(1)*A073157(4)+A073157(2)*A073157(3)= 1*293+2*70+5*18=523. Rows: {1}; {2,4}; {5,9,14}; {18,28,38,56}; {70,106,131,167,237}; {293,433,523,613,753,1046}; {1283,1869,2219,2543,2893,3479,4762}; ...
Formula
Triangle {a(n, k), n >= 0, 0<=k<=n} defined by: a(0, 0)=1, a(n, 0)=A073157(n), a(n, n)=A073155(n+1), a(n, 0)=a(n-1, n-1) + a(n-2, n-2), a(n, k)=sum{j=0..k} A073157(j) * A073157(n-j).
G.f.: Sum_{n>=0, 0<=k<=n} a(n, k) x^n y^k = A(x*y)(A(x) - y A(x*y))/(1 - y) where A(x) = (1 - (1 - 4 x (1 + x)^2)^(1/2))/(2 x (1 + x)) is the o.g.f. for A073157. - David Callan, Aug 16 2006