cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A073175 First occurrence of an n-digit prime as a substring in the concatenation of the natural numbers 12345678910111213141516171819202122232425262728293031....

Original entry on oeis.org

2, 23, 101, 4567, 67891, 789101, 4567891, 23456789, 728293031, 1234567891, 45678910111, 678910111213, 1222324252627, 12345678910111, 415161718192021, 3637383940414243, 12223242526272829, 910111213141516171
Offset: 1

Views

Author

Zak Seidov, Aug 22 2002

Keywords

Comments

This is to Champernowne's constant 0.12345678910111213... (Sloane's A033307) as A073062 is to A033308 Decimal expansion of Copeland-Erdos constant: concatenate primes. - Jonathan Vos Post, Aug 25 2008

Examples

			Take 1234567891011121314151617....; a(4)=4567 because the first 4-digit prime in the sequence is 4567.
1213 is < 4567 but occurs later in the string.
a(5) = 67891 is the first occurrence of a five-digit substring that is a prime, 12345(67891)011121314...
a(1) = 2 = prime(1). a(2) = 23 = prime(9). a(3) = 571 = prime(105). a(4) = 2357 = prime(350). a(5) = 11131 = prime(1349). - _Jonathan Vos Post_, Aug 25 2008
		

Crossrefs

Cf. A003617. - M. F. Hasler, Aug 23 2008

Programs

  • Maple
    N:= 1000: # to use the concatenation of 1 to N
    L:= NULL:
    for n from 1 to N do
      L:= L, op(ListTools:-Reverse(convert(n,base,10)))
    od:
    L:= [L]:
    nL:= nops(L);
    f:= proc(n) local k,B,x;
      for k from 1 to nL-n+1 do
        B:= L[k..k+n-1];
        x:= add(B[i]*10^(n-i),i=1..n);
        if isprime(x) then return x fi
      od;
    false;
    end proc:
    seq(f(n),n=1..100); # Robert Israel, Aug 16 2018
  • Mathematica
    p200=Flatten[IntegerDigits[Range[200]]]; Do[pn=Partition[p200, n, 1]; ln=Length[pn]; tab=Table[Sum[10^(n-k)*pn[[i, k]], {k, n}], {i, ln}]; Print[{n, Select[tab, PrimeQ][[1]]}], {n, 20}]
  • PARI
    {s=Vec(Str(c=1)); for(d=1,30, for(j=1,9e9,
    #sM. F. Hasler, Aug 23 2008

Extensions

Edited by N. J. A. Sloane, Aug 19 2008 at the suggestion of R. J. Mathar