cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A073225 a(n) = ceiling(n^n/n!).

Original entry on oeis.org

1, 1, 2, 5, 11, 27, 65, 164, 417, 1068, 2756, 7148, 18614, 48639, 127464, 334865, 881658, 2325751, 6145597, 16263867, 43099805, 114356612, 303761261, 807692035, 2149632062, 5726042116, 15264691108, 40722913455, 108713644517
Offset: 0

Views

Author

Michael Somos, Jul 22 2002

Keywords

Comments

The van der Waerden conjecture, now a theorem thanks to Egorycev, states that the permanent of any n X n doubly stochastic matrix is >= n!/n^n, with equality iff the matrix has all entries equal to 1/n.
Therefore the reciprocal of the permanent of any n X n doubly stochastic matrix is bounded from above by n^n/n! and this sequence.
n^n/n! = A001142(n)/A001142(n-1), where A001142(n) is product{k=0 to n} C(n,k) (where C() is a binomial coefficient). - Leroy Quet, May 01 2004

Examples

			G.f.: 1 + x + 2*x^2 + 5*x^3 + 11*x^4 + 27*x^5 + 65*x^6 + 164*x^7 + 417*x^8 + ...
		

References

  • G. P. Egorycev, Solution of the van der Waerden problem for permanents (Russian), Preprint IFSO-13 M. Akad. Nauk SSSR Sibirsk. Otdel., Inst. Fiz., Krasnoyarsk, 1980. 12 pp. Math. Rev. 82e:15006.
  • J. H. van Lint, R. M. Wilson, A Course in Combinatorics, Cambridge Univ. Press, 1992. p. 86.

Crossrefs

Programs

  • Magma
    [Ceiling(n^n/Factorial(n)): n in [0..50]]; // G. C. Greubel, May 29 2018
  • Mathematica
    Join[{1}, Table[Ceiling[n^n/n!], {n,1,50}]] (* G. C. Greubel, May 29 2018 *)
  • PARI
    {a(n) = ceil(n^n / n!)}