A073245 Sum of all cubefree numbers with the same squarefree kernel as the n-th squarefree number.
1, 6, 12, 30, 72, 56, 180, 132, 182, 336, 360, 306, 380, 672, 792, 552, 1092, 870, 2160, 992, 1584, 1836, 1680, 1406, 2280, 2184, 1722, 4032, 1892, 3312, 2256, 3672, 2862, 3960, 4560, 5220, 3540, 3782, 5952, 5460, 9504, 4556, 6624, 10080, 5112, 5402
Offset: 1
Keywords
Examples
14 is the 10th squarefree number: A005117(10)=14=2*7, the cubefree numbers with squarefree kernel =14 are 14, 28=2*2*7, 98=2*7*7 and 196=2*2*7*7; therefore a(10)=14+28+98+196=336; a(10)=A062822(10)*A005117(10)=24*14=336.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
Map[# * DivisorSigma[1, #] &, Select[Range[200], SquareFreeQ]] (* Amiram Eldar, Oct 14 2020 *)
-
PARI
apply(x->(x*sigma(x)), select(issquarefree, [1..100])) \\ Michel Marcus, Oct 18 2020
-
Python
from math import isqrt from sympy import mobius, divisor_sigma def A073245(n): def f(x): return n+x-sum(mobius(k)*(x//k**2) for k in range(1, isqrt(x)+1)) m, k = n, f(n) while m != k: m, k = k, f(k) return m*divisor_sigma(m) # Chai Wah Wu, Aug 12 2024
Formula
Sum_{n>=1} 1/a(n) = A306633. - Amiram Eldar, Oct 14 2020
Sum_{k=1..n} a(k) ~ c * n^3, where c = zeta(2)^3/(3*zeta(3)) = 1.23423882415851340020... . - Amiram Eldar, Oct 09 2023