cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A073245 Sum of all cubefree numbers with the same squarefree kernel as the n-th squarefree number.

Original entry on oeis.org

1, 6, 12, 30, 72, 56, 180, 132, 182, 336, 360, 306, 380, 672, 792, 552, 1092, 870, 2160, 992, 1584, 1836, 1680, 1406, 2280, 2184, 1722, 4032, 1892, 3312, 2256, 3672, 2862, 3960, 4560, 5220, 3540, 3782, 5952, 5460, 9504, 4556, 6624, 10080, 5112, 5402
Offset: 1

Views

Author

Reinhard Zumkeller, Jul 21 2002

Keywords

Examples

			14 is the 10th squarefree number: A005117(10)=14=2*7, the cubefree numbers with squarefree kernel =14 are 14, 28=2*2*7, 98=2*7*7 and 196=2*2*7*7; therefore a(10)=14+28+98+196=336; a(10)=A062822(10)*A005117(10)=24*14=336.
		

Crossrefs

Programs

  • Mathematica
    Map[# * DivisorSigma[1, #] &, Select[Range[200], SquareFreeQ]] (* Amiram Eldar, Oct 14 2020 *)
  • PARI
    apply(x->(x*sigma(x)), select(issquarefree, [1..100])) \\ Michel Marcus, Oct 18 2020
    
  • Python
    from math import isqrt
    from sympy import mobius, divisor_sigma
    def A073245(n):
        def f(x): return n+x-sum(mobius(k)*(x//k**2) for k in range(1, isqrt(x)+1))
        m, k = n, f(n)
        while m != k:
            m, k = k, f(k)
        return m*divisor_sigma(m) # Chai Wah Wu, Aug 12 2024

Formula

a(n) = A062822(n)*A005117(n).
Sum_{n>=1} 1/a(n) = A306633. - Amiram Eldar, Oct 14 2020
a(n) = A064987(A005117(n)). - Michel Marcus, Oct 18 2020
Sum_{k=1..n} a(k) ~ c * n^3, where c = zeta(2)^3/(3*zeta(3)) = 1.23423882415851340020... . - Amiram Eldar, Oct 09 2023