A073248 Squarefree numbers k such that k+1 is also squarefree, but k-1 and k+2 are not.
10, 46, 61, 73, 82, 118, 122, 133, 145, 154, 173, 190, 205, 226, 246, 262, 273, 277, 290, 298, 313, 326, 334, 370, 373, 385, 406, 421, 426, 442, 457, 473, 478, 493, 505, 514, 526, 537, 565, 573, 586, 601, 606, 622, 626, 658, 673, 694, 709, 730, 733, 745
Offset: 1
Keywords
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
state:= [true,true,true,true]: R:= NULL: count:= 0: for n from 1 while count < 100 do state:= [state[2],state[3],state[4],numtheory:-issqrfree(n)]; if state = [false,true,true,false] then R:= R, n-2; count:= count+1 fi od: R; # Robert Israel, Mar 02 2022
-
Mathematica
Transpose[SequencePosition[Table[If[SquareFreeQ[n],1,0],{n,800}],{0,1,1,0}]][[1]]+1 (* The program uses the SequencePosition function from Mathematica version 10 *) (* Harvey P. Dale, Mar 09 2016 *)