cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A073324 Smallest x such that prime(x) mod c(x) = n, where prime(j) is the j-th prime, c(j) is the j-th composite number.

Original entry on oeis.org

5, 1, 2, 8, 3, 242, 4, 245, 100, 8313, 10, 50190, 23, 8338, 3390, 12, 24, 308926, 13, 49, 25, 15, 26, 12556637, 112, 55, 117, 58, 56, 1400, 59, 265, 122, 267, 31, 12556641, 603, 270, 33, 12556639, 126, 272, 65, 66, 127, 63, 35, 50270, 37, 1413, 129, 1434, 38, 1411
Offset: 1

Views

Author

Labos Elemer, Jul 30 2002

Keywords

Examples

			x=10: p(10)=29,c(10)=18, Mod[29,18]=11 appears first here, so a(11)=10.
		

Crossrefs

Programs

  • Mathematica
    f[x_] := Mod[Prime[x], FixedPoint[x+PrimePi[ # ]+1&, x]] t=Table[0, {256}]; Do[s=f[n]; If[s<257&&t[[s]]==0, t[[s]]=n], {n, 1, 400000}]; t
    Module[{nn=500000,cmps,prs,len},cmps=Select[Range[nn],CompositeQ];len= Length[ cmps];Table[SelectFirst[Thread[{Range[len],Prime[Range[len]],cmps}],Mod[#[[2]], #[[3]]] ==n&],{n,23}]][[All,1]] (* The program generates the first 23 terms of the sequence. *) (* Harvey P. Dale, Nov 26 2022 *)
  • PARI
    isc(n) = (n != 1) && !isprime(n);
    lista(nn) = {my(vp = primes(nn), vc = select(x->isc(x), [1..nn])); for (n=1, 50, my(k=1); while((vp[k] % vc[k]) != n, k++; if ((k>#vp) || (k>#vc), return)); print1(k, ", "););} \\ Michel Marcus, Sep 02 2019
    
  • PARI
    a(n) = my(p=2); forcomposite(c=4, oo, if(p % c == n, return(primepi(p))); p = nextprime(p+1)); \\ Daniel Suteu, Sep 02 2019

Formula

a(n) = Min{x; A000040(x) mod A002808(x) = n} = Min{x; A065859(x) = n}.

Extensions

a(24)-a(50) from Michel Marcus, Sep 02 2019
More terms from Giovanni Resta, Sep 03 2019