cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A073372 Second convolution of A001045(n+1) (generalized (1,2)-Fibonacci), n>=0, with itself.

Original entry on oeis.org

1, 3, 12, 34, 99, 261, 678, 1692, 4149, 9959, 23568, 55014, 127031, 290457, 658602, 1482240, 3314025, 7365915, 16285300, 35832810, 78500811, 171293293, 372412782, 806963364, 1743173469, 3754782351, 8066319768, 17285917742, 36957928479, 78847115649
Offset: 0

Views

Author

Wolfdieter Lang, Aug 02 2002

Keywords

Crossrefs

Third (m=2) column of triangle A073370.

Programs

  • Magma
    [(2^(n+3)*(16+15*n+3*n^2) +(-1)^n*(34+21*n+3*n^2))/162: n in [0..40]]; // G. C. Greubel, Sep 28 2022
    
  • Mathematica
    CoefficientList[Series[-(-1+x+2x^2)^(-3),{x,0,78}],x] (* or *) Table[(-3*(-1)^n*n^2+3*2^(n+2)*n^2-15*(-1)^n*n+9*2^(n+2)*n-16*(-1)^n+2^(n+4))/162,{n,42}] (* Vladimir Joseph Stephan Orlovsky, Feb 01 2012 *)
  • SageMath
    def A073372(n): return (2^(n+3)*(16+15*n+3*n^2) +(-1)^n*(34+21*n+3*n^2))/162
    [A073372(n) for n in range(40)] # G. C. Greubel, Sep 28 2022

Formula

a(n) = Sum_{k=0..n} b(k)*c(n-k), with b(k) = A001045(k+1) and c(k) = A073371(k).
a(n) = Sum_{k=0..floor(n/2)} binomial(n-k+2, 2) * binomial(n-k, k) * 2^k.
a(n) = ((30+9*n)*(n+1)*U(n+1) + 2*(33+9*n)*(n+2)*U(n))/162 with U(n) = A001045(n+1), n>=0.
G.f.: 1/(1 - (1+2*x)*x)^3.
E.g.f.: (1/162)*(32*(4 + 9*x + 3*x^2)*exp(2*x) + (34 - 24*x + 3*x^2)*exp(-x)). - G. C. Greubel, Sep 28 2022