A073372 Second convolution of A001045(n+1) (generalized (1,2)-Fibonacci), n>=0, with itself.
1, 3, 12, 34, 99, 261, 678, 1692, 4149, 9959, 23568, 55014, 127031, 290457, 658602, 1482240, 3314025, 7365915, 16285300, 35832810, 78500811, 171293293, 372412782, 806963364, 1743173469, 3754782351, 8066319768, 17285917742, 36957928479, 78847115649
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (3,3,-11,-6,12,8).
Programs
-
Magma
[(2^(n+3)*(16+15*n+3*n^2) +(-1)^n*(34+21*n+3*n^2))/162: n in [0..40]]; // G. C. Greubel, Sep 28 2022
-
Mathematica
CoefficientList[Series[-(-1+x+2x^2)^(-3),{x,0,78}],x] (* or *) Table[(-3*(-1)^n*n^2+3*2^(n+2)*n^2-15*(-1)^n*n+9*2^(n+2)*n-16*(-1)^n+2^(n+4))/162,{n,42}] (* Vladimir Joseph Stephan Orlovsky, Feb 01 2012 *)
-
SageMath
def A073372(n): return (2^(n+3)*(16+15*n+3*n^2) +(-1)^n*(34+21*n+3*n^2))/162 [A073372(n) for n in range(40)] # G. C. Greubel, Sep 28 2022
Formula
a(n) = Sum_{k=0..floor(n/2)} binomial(n-k+2, 2) * binomial(n-k, k) * 2^k.
a(n) = ((30+9*n)*(n+1)*U(n+1) + 2*(33+9*n)*(n+2)*U(n))/162 with U(n) = A001045(n+1), n>=0.
G.f.: 1/(1 - (1+2*x)*x)^3.
E.g.f.: (1/162)*(32*(4 + 9*x + 3*x^2)*exp(2*x) + (34 - 24*x + 3*x^2)*exp(-x)). - G. C. Greubel, Sep 28 2022