A073390 Third convolution of A002605(n) (generalized (2,2)-Fibonacci), n >= 0, with itself.
1, 8, 48, 240, 1080, 4512, 17856, 67776, 248880, 889600, 3109376, 10664448, 35989248, 119761920, 393676800, 1280157696, 4122985728, 13165099008, 41713192960, 131243970560, 410315433984, 1275348344832
Offset: 0
Links
- Muniru A Asiru, Table of n, a(n) for n = 0..500
- Index entries for linear recurrences with constant coefficients, signature (8,-16,-16,56,32,-64,-64,-16).
Programs
-
GAP
List([0..25], n->2^n*Sum([0..Int(n/2)],k->Binomial(n-k+3,3)*Binomial(n-k,k)*(1/2)^k)); # Muniru A Asiru, Jun 12 2018
-
Magma
R
:=PowerSeriesRing(Integers(), 40); Coefficients(R!( 1/(1-2*x-2*x^2)^4 )); // G. C. Greubel, Oct 03 2022 -
Mathematica
CoefficientList[Series[1/(1-2*x-2*x^2)^4, {x,0,40}], x] (* G. C. Greubel, Oct 03 2022 *)
-
SageMath
def A073390_list(prec): P.
= PowerSeriesRing(ZZ, prec) return P( 1/(1-2*x-2*x^2)^4 ).list() A073390_list(40) # G. C. Greubel, Oct 03 2022