A073405 Coefficient triangle of polynomials (rising powers) related to convolutions of A002605(n), n >= 0, (generalized (2,2)-Fibonacci). Companion triangle is A073406.
1, 36, 12, 1536, 888, 120, 80448, 62592, 15168, 1152, 5068800, 4813056, 1600704, 222336, 10944, 375598080, 413351424, 169917696, 32811264, 2992896, 103680, 32103751680, 39661608960, 19066503168, 4592982528
Offset: 0
Examples
k=2: U2(n)=2*((36+12*n)*(n+1)*U0(n+1)+(36+12*n)*(n+2)*U0(n))/(2!*12^2), cf. A073389. Triangle begins: 1; 36, 12; 1536, 888, 120; ... (lower triangular matrix a(k,m), k >= m >= 0, else 0).
Links
- W. Lang, First 7 rows.
Formula
Recursion for row polynomials defined in the comments: p(k, n)= 2*(2*(n+2)*p(k-1, n+1)+2*(n+2*(k+1))*p(k-1, n)+(n+3)*q(k-1, n+1)); q(k, n)= 4*((n+1)*p(k-1, n+1)+(n+2*(k+1))*q(k-1, n)), k >= 1. [Corrected by Sean A. Irvine, Nov 25 2024]
Comments