cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A073412 Lesser of three consecutive nonsquare integers each of which is the sum of two squares.

Original entry on oeis.org

72, 232, 520, 584, 800, 808, 1096, 1152, 1312, 1664, 1744, 1800, 1872, 1960, 2248, 2312, 2384, 2592, 2824, 3328, 3392, 3528, 4112, 4176, 4328, 5120, 5408, 5904, 6056, 6120, 6272, 6352, 6408, 6568, 6920, 8080, 8144, 8296, 8352, 8584, 8712, 9160, 9376
Offset: 1

Views

Author

Jason Earls, Aug 23 2002

Keywords

Comments

a(n) == 0 mod 8. - Zak Seidov, Jan 26 2013
Is this sequence the same as A064715? - Zak Seidov, Jan 26 2013
This sequence is distinct from A064715 since it allows numbers equal to twice a square, like 72, 1152, 2592, 3528, etc. - Giovanni Resta, Jan 29 2013
This sequence lists lesser of three consecutive nonsquare integers each of which is the sum of two squares. So this sequence is a subsequence of A064716. - Altug Alkan, Jul 07 2016

Examples

			232 is here since 232 = 6^2 + 14^2; 233 = 8^2 + 13^2; 234 = 3^2 + 15^2 and 232, 233, 234 are all nonsquares.
288 is not a term because 288 = 12^2 + 12^2, 289 = 8^2 + 15^2, 290 = 1^2 + 17^2 but 289 is also square.
		

Crossrefs

Programs

  • Maple
    is415:= proc(n) local F;
      if issqr(n) then return false fi;
      F:= select(t -> t[1] mod 4 = 3, ifactors(n)[2]);
      andmap(t -> t[2]::even, F);
    end proc:
    Q:= select(is415, [seq(seq(8*i+j,j=0..2),i=1..2000)]):
    Q[select(t -> Q[t+2]-Q[t]=2, [$1..nops(Q)-2])]; # Robert Israel, Mar 05 2018
  • Mathematica
    nsQ[x_] := !IntegerQ[Sqrt[x]];
    prQ[x_] := With[{pr = PowersRepresentations[x, 2, 2]}, pr != {} && AllTrue[pr[[1]], IntegerQ]];
    selQ[x_] := nsQ[x] && nsQ[x+1] && nsQ[x+2] && prQ[x] && prQ[x+1] && prQ[x+2];
    Select[8 Range[10000], selQ] (* Jean-François Alcover, Jun 11 2020 *)
  • PARI
    isA001481(n) = my(f=factor(n)); for(i=1, #f[, 1], if(f[i, 2]%2 && f[i, 1]%4==3, return(0))); 1;
    isok(n) = isA001481(n) && isA001481(n+1) && isA001481(n+2) && !issquare(n) && !issquare(n+1);
    lista(nn) = for(n=1, nn, if(isok(8*n), print1(8*n, ", "))); \\ Altug Alkan, Jul 07 2016

Extensions

Edited by Robert Israel, Mar 05 2018