cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A073425 a(0)=0; for n>0, a(n) = number of primes not exceeding n-th composite number.

Original entry on oeis.org

0, 2, 3, 4, 4, 4, 5, 6, 6, 6, 7, 8, 8, 8, 9, 9, 9, 9, 9, 10, 11, 11, 11, 11, 11, 12, 12, 12, 13, 14, 14, 14, 15, 15, 15, 15, 15, 16, 16, 16, 16, 16, 17, 18, 18, 18, 18, 18, 19, 19, 19, 20, 21, 21, 21, 21, 21, 22, 22, 22, 23, 23, 23, 23, 23, 24, 24, 24, 24, 24, 24, 24, 25, 25, 25, 26
Offset: 0

Views

Author

Labos Elemer, Jul 31 2002

Keywords

Comments

a(n-1) = A018252(n) - n. a(n-1) = inverse (frequency distribution) sequence of A014689(n), i.e. number of terms of sequence A014689(n) less than n. a(n) = A073169(n+1) - 1, for n >= 1. For n >= 1: a(n) + 1 = A073169(n) = the number of set {1, primes}, i.e. (A008578) less than (n)-th composite numbers (A002828(n)). a(n-1) = The number of primes (A000040(n)) less than n-th nonprime (A018252(n)). - Jaroslav Krizek, Jun 27 2009

Examples

			n=100: composite[100]=133,Pi[133]=32=a(100)
		

Crossrefs

Programs

  • Mathematica
    c[x_] := FixedPoint[x+PrimePi[ # ]+1&, x] Table[PrimePi[c[w]], {w, 1, 128}]
    With[{nn=150},PrimePi/@Complement[Range[nn],Prime[Range[PrimePi[nn]]]]] (* Harvey P. Dale, Jun 26 2013 *)
  • Python
    from sympy import composite
    def A073425(n): return composite(n)-n-1 if n else 0 # Chai Wah Wu, Oct 11 2024

Formula

a(n) = A000720(A002808(n)).
a(n) ~ n. - Charles R Greathouse IV, Sep 02 2015
a(n) = A002808(n)-n-1 for n > 0. - Chai Wah Wu, Oct 11 2024

Extensions

Edited by N. J. A. Sloane, Jul 04 2009 at the suggestion of R. J. Mathar
Correction for change of offset in A158611 and A008578 in Aug 2009 Jaroslav Krizek, Jan 27 2010