cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A073436 Smallest k such that k mod pi(k) = n.

Original entry on oeis.org

2, 3, 5, 7, 16, 21, 22, 25, 26, 29, 32, 65, 66, 70, 77, 78, 82, 86, 87, 88, 92, 93, 94, 95, 99, 106, 116, 117, 118, 119, 218, 219, 220, 221, 222, 247, 248, 249, 250, 255, 256, 261, 262, 267, 268, 289, 290, 291, 292, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306
Offset: 0

Views

Author

Labos Elemer, Jul 31 2002

Keywords

Comments

a(n) > a(n-1) except for 68, 180, 1051, 6454, 6456, 6459, 40073, 40078, ..., . - Robert G. Wilson v, Feb 24 2023

Examples

			Remainder 7 appears first as 25 mod pi(25) = 25 mod 9 = 7, so a(7) = 25.
		

Crossrefs

Programs

Formula

a(n) = Min{k: k mod A000720(k) = n} = Min{k: A065134(k) = n}.

Extensions

a(0) from Robert G. Wilson v, Feb 23 2023

A073438 Remainder of division G[n]/Pi[n], where G[n] is the number of composites not exceeding n.

Original entry on oeis.org

0, 0, 1, 1, 2, 2, 3, 0, 1, 0, 1, 0, 1, 2, 3, 2, 3, 2, 3, 4, 5, 4, 5, 6, 7, 8, 0, 8, 9, 8, 9, 10, 0, 1, 2, 0, 1, 2, 3, 1, 2, 0, 1, 2, 3, 1, 2, 3, 4, 5, 6, 4, 5, 6, 7, 8, 9, 7, 8, 6, 7, 8, 9, 10, 11, 9, 10, 11, 12, 10, 11, 9, 10, 11, 12, 13, 14, 12, 13, 14, 15, 13, 14, 15, 16, 17, 18, 16, 17, 18
Offset: 2

Views

Author

Labos Elemer, Jul 31 2002

Keywords

Examples

			n=100: G[100]=100-Pi[100]-1=100-25-1=74, Pi[100]=25, remainder=a(100)=Mod[74,25]=24.
		

Crossrefs

Programs

  • Mathematica
    Table[Mod[w-PrimePi[w]-1, PrimePi[w]], {w, 1, 128}]
    With[{nn=100},Mod[#[[1]]-#[[2]]-1,#[[2]]]&/@Thread[{Range[2,nn],PrimePi[Range[2,nn]]}]] (* Harvey P. Dale, Feb 26 2025 *)

Formula

a(n)=Mod[A065855(n), A000720(n)]=Mod[n-Pi[n]-1, Pi[n]] for n>1.
Showing 1-2 of 2 results.