cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A073445 Second differences of A002808, the sequence of composites.

Original entry on oeis.org

0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, -1, 0, 0, 0, 1, 0, -1, 0, 0, 0, 1, -1, 0, 1, 0, -1, 0, 1, -1, 0, 0, 0, 1, -1, 0, 0, 0, 1, 0, -1, 0, 0, 0, 1, -1, 0, 1, 0, -1, 0, 0, 0, 1, -1, 0, 1, -1, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 1, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 1, -1, 0, 0, 0, 1, 0, -1, 0, 0, 0, 0, 0, 0, 0, 1, 0, -1, 0
Offset: 1

Views

Author

Labos Elemer, Aug 01 2002

Keywords

Examples

			From _Gus Wiseman_, Oct 10 2024: (Start)
The composite numbers (A002808) are:
  4, 6, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21, 22, 24, 25, 26, 27, 28, 30, 32, 33, ...
with first differences (A073783):
  2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 2, 1, 1, ...
with first differences (A073445):
  0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, -1, 0, 0, 0, 1, 0, -1, 0, 0, 0, 1, -1, ...
(End)
		

Crossrefs

Also first differences of A054546.
For first differences we had A073783 (ones A375929), run-lengths A376680.
Positions of zeros are A376602.
Positions of nonzeros are A376603.
Positions of ones are A376651, negative-ones A376652.
A002808 lists the composite numbers.
A064113 lists positions of adjacent equal prime gaps.
A333254 gives run-lengths of differences between consecutive primes.
Other second differences: A036263 (prime), A376590 (squarefree), A376596 (prime-power), A376604 (Kolakoski).

Programs

  • Haskell
    a073445 n = a073445_list !! (n-1)
    a073445_list = zipWith (-) (tail a073783_list) a073783_list
    -- Reinhard Zumkeller, Jan 10 2013
    
  • Mathematica
    c[x_] := FixedPoint[x+PrimePi[ # ]+1&, x]; Table[c[w+2]-2*c[w+1]+c[w], {w, 200}]
    (* second program *)
    Differences[Select[Range[100],CompositeQ],2] (* Gus Wiseman, Oct 08 2024 *)
  • Python
    from sympy import primepi
    def A073445(n):
        def iterfun(f,n=0):
            m, k = n, f(n)
            while m != k: m, k = k, f(k)
            return m
        return (a:=iterfun(f:=lambda x:n+primepi(x)+1,n))-((b:=iterfun(lambda x:f(x)+1,a))<<1)+iterfun(lambda x:f(x)+2,b) # Chai Wah Wu, Oct 03 2024

Formula

a(n) = c(n+2)-2*c(n+1)+c(n), where c(n) = A002808(n).
a(n) = A073783(n+1) - A073783(n). - Reinhard Zumkeller, Jan 10 2013