cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A073467 a(n) is the number of essentially different ways in which the integers 1,2,3,...,2n can be arranged in a circle such that (1) all pairs of adjacent integers sum to a prime number and (2) all pairs of integers opposite each other on the circle sum to a prime.

Original entry on oeis.org

1, 0, 0, 0, 4, 0, 8, 0, 556, 0, 16156, 0, 4545745, 0, 1697587998, 0
Offset: 1

Views

Author

T. D. Noe, Aug 02 2002

Keywords

Comments

Note that a(n) = 0 for all even n because opposite numbers sum to an even number. The Mathematica program uses a backtracking algorithm to count the arrangements. To print the unique arrangements, remove the comments from around the print statement.

Examples

			a(5)=4 because there are four essential different arrangements: {1,2,3,4,7,6,5,8,9,10}, {1,2,3,10,7,6,5,8,9,4}, {1,2,9,4,7,6,5,8,3,10} and {1,2,9,10,7,6,5,8,3,4}.
		

Crossrefs

Cf. A051252.

Programs

  • Mathematica
    maxN=9; $RecursionLimit=500; try[lev_] := Module[{t, j}, If[lev>2n, (*then make sure the sum of the first and last is prime*) If[PrimeQ[soln[[1]]+soln[[2n]]]&&soln[[2]]<=soln[[2n]], (*Print[soln]; *)cnt++ ], (*else append another number to the soln list*) t=soln[[lev-1]]; For[j=1, j<=Length[s[[t]]], j++, If[ !MemberQ[soln, s[[t]][[j]]], If[lev<=n||MemberQ[s[[soln[[lev-n]]]], s[[t]][[j]]], soln[[lev]]=s[[t]][[j]]; try[lev+1]; soln[[lev]]=0]]]]]; For[lst={}; n=1, n<=maxN, n++, s=Table[{}, {2n}]; For[i=1, i<=2n, i++, For[j=1, j<=2n, j++, If[i!=j&&PrimeQ[i+j], AppendTo[s[[i]], j]]]]; Delete[s[[1]], -1]; (* these will all be duplicates *) soln=Table[0, {2n}]; soln[[1]]=1; cnt=0; try[2]; AppendTo[lst, cnt]]; lst

Extensions

a(14)-a(16) from Bert Dobbelaere, Jun 24 2019