cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A073474 Triangle T(n,k) read by rows, where o.g.f. for T(n,k) is n!*Sum_{k=0..n} (1+x)^(n-k)/k!.

Original entry on oeis.org

1, 2, 1, 5, 6, 2, 16, 33, 24, 6, 65, 196, 228, 120, 24, 326, 1305, 2120, 1740, 720, 120, 1957, 9786, 20550, 23160, 14760, 5040, 720, 13700, 82201, 212352, 305970, 265440, 138600, 40320, 5040, 109601, 767208, 2356424, 4146576, 4571280, 3232320, 1431360, 362880, 40320
Offset: 0

Views

Author

Vladeta Jovovic, Aug 26 2002

Keywords

Comments

Row sums give A010844.

Examples

			Triangle begins:
    1;
    2,    1;
    5,    6,    2;
   16,   33,   24,    6;
   65,  196,  228,  120,  24;
  326, 1305, 2120, 1740, 720, 120;
  ...
		

Crossrefs

Cf. A000142, A000522, A073107, A010844 (row sums).

Programs

  • Maple
    G:=simplify(series(exp(x)/(1-x-x*y),x=0,13)): P[0]:=1: for n from 1 to 11 do P[n]:=sort(n!*coeff(G,x^n)) od: seq(seq(coeff(y*P[n],y^k),k=1..n+1),n=0..9);
    # second Maple program:
    b:= proc(n, k) option remember; `if`(k>n, 0, `if`(k=0, 1,
          n*(b(n-1, k-1)+b(n-1, k))))
        end:
    T:= (n, k)-> b(n+1, k+1)/(n+1):
    seq(seq(T(n, k), k=0..n), n=0..9);  # Alois P. Heinz, Sep 12 2019
  • Mathematica
    b[n_, k_] := b[n, k] = If[k>n, 0, If[k==0, 1, n (b[n-1, k-1]+b[n-1, k])]];
    T[n_, k_] := b[n+1, k+1]/(n+1);
    Table[T[n, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Jean-François Alcover, Dec 09 2019, after Alois P. Heinz *)
    T[n_, k_] := Sum[Binomial[j, k] FactorialPower[n, j], {j, 0, n}]; (* Peter Luschny, Oct 16 2024 *)
  • SageMath
    def T(n, k): return sum(binomial(j, k) * falling_factorial(n, j) for j in range(n+1))
    for n in range(8): print([T(n, k) for k in range(n+1)])
    # Peter Luschny, Oct 16 2024

Formula

E.g.f.: exp(x)/(1-x-x*y). - Vladeta Jovovic, Oct 17 2003
T(n, k) = Sum_{j=0..n} binomial(j, k)*FallingFactorial(n, j). - Peter Luschny, Oct 16 2024

Extensions

Edited by Emeric Deutsch, Jun 10 2004