cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A073482 Largest prime factor of the n-th squarefree number.

Original entry on oeis.org

1, 2, 3, 5, 3, 7, 5, 11, 13, 7, 5, 17, 19, 7, 11, 23, 13, 29, 5, 31, 11, 17, 7, 37, 19, 13, 41, 7, 43, 23, 47, 17, 53, 11, 19, 29, 59, 61, 31, 13, 11, 67, 23, 7, 71, 73, 37, 11, 13, 79, 41, 83, 17, 43, 29, 89, 13, 31, 47, 19, 97, 101, 17, 103, 7, 53, 107, 109, 11, 37, 113, 19, 23, 59, 17, 61, 41
Offset: 1

Views

Author

Reinhard Zumkeller, Aug 03 2002

Keywords

Crossrefs

Programs

  • Haskell
    a073482 = a006530 . a005117  -- Reinhard Zumkeller, Feb 04 2012
    
  • Maple
    issquarefree := proc(n::integer) local nf, ifa, lar; nf := op(2,ifactors(n)); for ifa from 1 to nops(nf) do lar := op(1,op(ifa,nf)); if op(2,op(ifa,nf)) >= 2 then RETURN(0); fi; od : RETURN(lar); end: printf("1,"); for n from 2 to 100 do lfa := issquarefree(n); if lfa > 0 then printf("%a,",lfa); fi; od : # R. J. Mathar, Apr 02 2006
  • Mathematica
    FactorInteger[#][[-1, 1]]& /@ Select[Range[100], SquareFreeQ] (* Jean-François Alcover, Feb 01 2018 *)
    s[n_] := Module[{f = FactorInteger[n]}, If[AllTrue[f[[;; , 2]], # < 2 &], f[[-1, 1]], Nothing]]; Array[s, 200] (* Amiram Eldar, Mar 03 2024 *)
  • PARI
    do(x)=my(v=List([1])); forfactored(n=2,x\1, if(vecmax(n[2][,2])==1, listput(v, vecmax(n[2][,1])))); Vec(v) \\ Charles R Greathouse IV, Nov 05 2017
    
  • Python
    from math import isqrt
    from sympy import mobius, primefactors
    def A073482(n):
        def f(x): return n+x-sum(mobius(k)*(x//k**2) for k in range(1, isqrt(x)+1))
        kmin, kmax = 0,1
        while f(kmax) > kmax:
            kmax <<= 1
        while kmax-kmin > 1:
            kmid = kmax+kmin>>1
            if f(kmid) <= kmid:
                kmax = kmid
            else:
                kmin = kmid
        return max(primefactors(kmax),default=1) # Chai Wah Wu, Aug 28 2024

Formula

a(n) = A006530(A005117(n)).
a(n) = A265668(n, A001221(n)). - Reinhard Zumkeller, Dec 13 2015
Sum_{A005117(n) <= x} a(n) = Sum_{i=1..k} d_i * x^2/log(x)^i + O(x^2/log(x)^(k+1)), for any given positive integer k, where d_i are constants, d_1 = 15/(2*Pi^2) = 0.759908... (A323669) (De Koninck and Jakimczuk, 2024). - Amiram Eldar, Mar 03 2024

Extensions

More terms from Jason Earls, Aug 06 2002