A073482 Largest prime factor of the n-th squarefree number.
1, 2, 3, 5, 3, 7, 5, 11, 13, 7, 5, 17, 19, 7, 11, 23, 13, 29, 5, 31, 11, 17, 7, 37, 19, 13, 41, 7, 43, 23, 47, 17, 53, 11, 19, 29, 59, 61, 31, 13, 11, 67, 23, 7, 71, 73, 37, 11, 13, 79, 41, 83, 17, 43, 29, 89, 13, 31, 47, 19, 97, 101, 17, 103, 7, 53, 107, 109, 11, 37, 113, 19, 23, 59, 17, 61, 41
Offset: 1
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
- Jean-Marie De Koninck and Rafael Jakimczuk, Summing the largest prime factor over integer sequences, Revista de la Unión Matemática Argentina, Vol. 67, No. 1 (2024), pp. 27-35.
Programs
-
Haskell
a073482 = a006530 . a005117 -- Reinhard Zumkeller, Feb 04 2012
-
Maple
issquarefree := proc(n::integer) local nf, ifa, lar; nf := op(2,ifactors(n)); for ifa from 1 to nops(nf) do lar := op(1,op(ifa,nf)); if op(2,op(ifa,nf)) >= 2 then RETURN(0); fi; od : RETURN(lar); end: printf("1,"); for n from 2 to 100 do lfa := issquarefree(n); if lfa > 0 then printf("%a,",lfa); fi; od : # R. J. Mathar, Apr 02 2006
-
Mathematica
FactorInteger[#][[-1, 1]]& /@ Select[Range[100], SquareFreeQ] (* Jean-François Alcover, Feb 01 2018 *) s[n_] := Module[{f = FactorInteger[n]}, If[AllTrue[f[[;; , 2]], # < 2 &], f[[-1, 1]], Nothing]]; Array[s, 200] (* Amiram Eldar, Mar 03 2024 *)
-
PARI
do(x)=my(v=List([1])); forfactored(n=2,x\1, if(vecmax(n[2][,2])==1, listput(v, vecmax(n[2][,1])))); Vec(v) \\ Charles R Greathouse IV, Nov 05 2017
-
Python
from math import isqrt from sympy import mobius, primefactors def A073482(n): def f(x): return n+x-sum(mobius(k)*(x//k**2) for k in range(1, isqrt(x)+1)) kmin, kmax = 0,1 while f(kmax) > kmax: kmax <<= 1 while kmax-kmin > 1: kmid = kmax+kmin>>1 if f(kmid) <= kmid: kmax = kmid else: kmin = kmid return max(primefactors(kmax),default=1) # Chai Wah Wu, Aug 28 2024
Formula
Sum_{A005117(n) <= x} a(n) = Sum_{i=1..k} d_i * x^2/log(x)^i + O(x^2/log(x)^(k+1)), for any given positive integer k, where d_i are constants, d_1 = 15/(2*Pi^2) = 0.759908... (A323669) (De Koninck and Jakimczuk, 2024). - Amiram Eldar, Mar 03 2024
Extensions
More terms from Jason Earls, Aug 06 2002