cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A265668 Table read by rows: prime factors of squarefree numbers; a(1) = 1 by convention.

Original entry on oeis.org

1, 2, 3, 5, 2, 3, 7, 2, 5, 11, 13, 2, 7, 3, 5, 17, 19, 3, 7, 2, 11, 23, 2, 13, 29, 2, 3, 5, 31, 3, 11, 2, 17, 5, 7, 37, 2, 19, 3, 13, 41, 2, 3, 7, 43, 2, 23, 47, 3, 17, 53, 5, 11, 3, 19, 2, 29, 59, 61, 2, 31, 5, 13, 2, 3, 11, 67, 3, 23, 2, 5, 7, 71, 73, 2
Offset: 1

Views

Author

Reinhard Zumkeller, Dec 13 2015

Keywords

Comments

For n > 1: A072047(n) = length of row n;
T(n,1) = A073481(n); T(n,A001221(n)) = A073482(n);
for n > 1: A111060(n) = sum of row n;
A005117(n) = product of row n.

Examples

			.   n | T(n,*)  A5117(n)    n | T(n,*)  A5117(n)    n | T(n,*)   A5117(n)
. ----+---------+------   ----+---------+------   ----+----------+------
.   1 | [1]     |  1       21 | [3,11]  | 33       41 | [2,3,11] | 66
.   2 | [2]     |  2       22 | [2,17]  | 34       42 | [67]     | 67
.   3 | [3]     |  3       23 | [5,7]   | 35       43 | [3,23]   | 69
.   4 | [5]     |  5       24 | [37]    | 37       44 | [2,5,7]  | 70
.   5 | [2,3]   |  6       25 | [2,19]  | 38       45 | [71]     | 71
.   6 | [7]     |  7       26 | [3,13]  | 39       46 | [73]     | 73
.   7 | [2,5]   | 10       27 | [41]    | 41       47 | [2,37]   | 74
.   8 | [11]    | 11       28 | [2,3,7] | 42       48 | [7,11]   | 77
.   9 | [13]    | 13       29 | [43]    | 43       49 | [2,3,13] | 78
.  10 | [2,7]   | 14       30 | [2,23]  | 46       50 | [79]     | 79
.  11 | [3,5]   | 15       31 | [47]    | 47       51 | [2,41]   | 82
.  12 | [17]    | 17       32 | [3,17]  | 51       52 | [83]     | 83
.  13 | [19]    | 19       33 | [53]    | 53       53 | [5,17]   | 85
.  14 | [3,7]   | 21       34 | [5,11]  | 55       54 | [2,43]   | 86
.  15 | [2,11]  | 22       35 | [3,19]  | 57       55 | [3,29]   | 87
.  16 | [23]    | 23       36 | [2,29]  | 58       56 | [89]     | 89
.  17 | [2,13]  | 26       37 | [59]    | 59       57 | [7,13]   | 91
.  18 | [29]    | 29       38 | [61]    | 61       58 | [3,31]   | 93
.  19 | [2,3,5] | 30       39 | [2,31]  | 62       59 | [2,47]   | 94
.  20 | [31]    | 31       40 | [5,13]  | 65       60 | [5,19]   | 95  .
		

Crossrefs

Programs

  • Haskell
    import Math.NumberTheory.Primes.Factorisation (factorise)
    import Data.Maybe (mapMaybe)
    a265668 n k = a265668_tabf !! (n-1) !! (k-1)
    a265668_row n = a265668_tabf !! (n-1)
    a265668_tabf = [1] : mapMaybe f [2..] where
       f x = if all (== 1) es then Just ps else Nothing
             where (ps, es) = unzip $ factorise x
  • Mathematica
    FactorInteger[#][[All,1]]&/@Select[Range[100],SquareFreeQ]//Flatten (* Harvey P. Dale, Apr 27 2018 *)

A073481 Least prime factor of the n-th squarefree number.

Original entry on oeis.org

1, 2, 3, 5, 2, 7, 2, 11, 13, 2, 3, 17, 19, 3, 2, 23, 2, 29, 2, 31, 3, 2, 5, 37, 2, 3, 41, 2, 43, 2, 47, 3, 53, 5, 3, 2, 59, 61, 2, 5, 2, 67, 3, 2, 71, 73, 2, 7, 2, 79, 2, 83, 5, 2, 3, 89, 7, 3, 2, 5, 97, 101, 2, 103, 3, 2, 107, 109, 2, 3, 113, 2, 5, 2, 7, 2, 3, 127, 3, 2, 131, 7, 2, 137, 2, 139, 3, 2, 11, 5
Offset: 1

Views

Author

Reinhard Zumkeller, Aug 03 2002

Keywords

Crossrefs

Programs

  • Haskell
    a073482 = a020639 . a005117  -- Reinhard Zumkeller, Feb 04 2012
    
  • Mathematica
    a = Select[Range[300], SquareFreeQ[#]&]; Table[FactorInteger[a[[n]]][[1,1]], {n, Length[a]}] (* Vladimir Joseph Stephan Orlovsky, Jan 30 2012 *)
  • PARI
    apply(x->(if (x==1,1, vecmin(factor(x)[,1]))), select(issquarefree, [1..150])) \\ Michel Marcus, Dec 17 2023
    
  • Python
    from math import isqrt
    from sympy import mobius, primefactors
    def A073481(n):
        def f(x): return n+x-sum(mobius(k)*(x//k**2) for k in range(1, isqrt(x)+1))
        kmin, kmax = 0,1
        while f(kmax) > kmax:
            kmax <<= 1
        while kmax-kmin > 1:
            kmid = kmax+kmin>>1
            if f(kmid) <= kmid:
                kmax = kmid
            else:
                kmin = kmid
        return min(primefactors(kmax),default=1) # Chai Wah Wu, Aug 28 2024

Formula

a(n) = A020639(A005117(n)).
a(n) = A265668(n,1). - Reinhard Zumkeller, Dec 13 2015

Extensions

More terms from Jason Earls, Aug 06 2002

A073483 For the n-th squarefree number: the product of all primes greater than its smallest factor and less than its largest factor and not dividing it.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 3, 1, 1, 15, 1, 1, 1, 5, 105, 1, 1155, 1, 1, 1, 35, 15015, 1, 1, 255255, 385, 1, 5, 1, 4849845, 1, 5005, 1, 7, 85085, 111546435, 1, 1, 3234846615, 77, 35, 1, 1616615, 3, 1, 1, 100280245065, 1, 385, 1, 3710369067405, 1, 1001
Offset: 1

Views

Author

Reinhard Zumkeller, Aug 03 2002

Keywords

Comments

a(n)=1 iff A073484(n)=0; a(A000040(n))=1, a(A006094(n))=1, a(A002110(n))=1.

Examples

			The 69th squarefree number is 110=2*5*11, primes between 2 and 11, not dividing 110, are 3 and 7, therefore a(69)=21.
		

Crossrefs

Programs

  • Haskell
    a073483 n = product $ filter ((> 0) . (mod m)) $
       dropWhile (<= a020639 m) $ takeWhile (<= a006530 m) a000040_list
       where m = a005117 n
    -- Reinhard Zumkeller, Jan 15 2012
  • Mathematica
    ppg[n_]:=Module[{f=Transpose[FactorInteger[n]][[1]]},Times@@Select[Prime[ Range[PrimePi[First[f]]+1,PrimePi[Last[f]]-1]],!MemberQ[f,#]&]]; ppg/@ Select[ Range[100],SquareFreeQ] (* Harvey P. Dale, Jan 16 2013 *)

Formula

a(n) = A002110(A073482(n))/(A005117(n)*A002110(A073481(n))).

Extensions

a(44) and a(49) corrected by Reinhard Zumkeller, Jan 14 2012
Definition clarified by Harvey P. Dale, Jan 16 2013

A117214 a(n) = (A117213(n))/(n-th squarefree positive integer).

Original entry on oeis.org

1, 1, 2, 6, 1, 30, 3, 210, 2310, 15, 2, 30030, 510510, 10, 105, 9699690, 1155, 223092870, 1, 6469693230, 70, 15015, 6, 200560490130, 255255, 770, 7420738134810, 5, 304250263527210, 4849845, 13082761331670030, 10010
Offset: 1

Views

Author

Leroy Quet, Mar 03 2006

Keywords

Comments

Product of all primes up to greatest prime factor of n-th squarefree number that do not divide the n-th squarefree number. - Franklin T. Adams-Watters, Oct 09 2006
a(n) = least k such that k*A005117(n) is a primorial number. Every term is squarefree. Let m be any squarefree number, and let P be the smallest primorial such that m|P. Then a(P/m) = m, and for any primorial number Q > P, a(Q/m) = m. Since there are infinitely many Q > P it follows that every squarefree number appears in this sequence infinitely many times. - David James Sycamore, Jul 04 2024

Examples

			10 is the 7th squarefree integer. And 2*3*5 = 30 is the smallest primorial number divisible by 10 = 2*5. So a(7) = 30/10 = 3.
		

Crossrefs

Programs

  • Haskell
    a117214 n = product $
       filter ((> 0) . (mod m)) $ takeWhile (< a006530 m) a000040_list
       where m = a005117 n
    -- Reinhard Zumkeller, Jan 14 2012
  • Mathematica
    Product[Prime@ i, {i, PrimePi@ FactorInteger[#][[-1, 1]]}]/# & /@ Select[Range@ 52, SquareFreeQ] (* Michael De Vlieger, Sep 30 2017 *)

Formula

a(n) = A002110(A000720(A005117(n))))/A005117(n). a(A002110(n)) = 1 for all n >= 0. a(A000040(n) = A002110(n-1), n > 1. - David James Sycamore, Jul 04 2024

Extensions

More terms from Franklin T. Adams-Watters, Oct 09 2006

A370833 a(n) is the greatest prime dividing the n-th cubefree number, for n >= 2; a(1)=1.

Original entry on oeis.org

1, 2, 3, 2, 5, 3, 7, 3, 5, 11, 3, 13, 7, 5, 17, 3, 19, 5, 7, 11, 23, 5, 13, 7, 29, 5, 31, 11, 17, 7, 3, 37, 19, 13, 41, 7, 43, 11, 5, 23, 47, 7, 5, 17, 13, 53, 11, 19, 29, 59, 5, 61, 31, 7, 13, 11, 67, 17, 23, 7, 71, 73, 37, 5, 19, 11, 13, 79, 41, 83, 7, 17, 43
Offset: 1

Views

Author

Amiram Eldar, Mar 03 2024

Keywords

Crossrefs

Programs

  • Mathematica
    s[n_] := Module[{f = FactorInteger[n]}, If[AllTrue[f[[;; , 2]], # < 3 &], f[[-1, 1]], Nothing]]; Array[s, 200]
  • PARI
    lista(kmax) = {my(f); print1(1, ", "); for(k = 2, kmax, f = factor(k); if(vecmax(f[, 2]) < 3, print1(f[#f~, 1], ", ")));}
    
  • Python
    from sympy import mobius, integer_nthroot, primefactors
    def A370833(n):
        def f(x): return n+x-sum(mobius(k)*(x//k**3) for k in range(1, integer_nthroot(x,3)[0]+1))
        m, k = n, f(n)
        while m != k:
            m, k = k, f(k)
        return max(primefactors(m),default=1) # Chai Wah Wu, Aug 06 2024

Formula

a(n) = A006530(A004709(n)).
Sum_{A004709(n) <= x} a(n) = Sum_{i=1..k} d_i * x^2/log(x)^i + O(x^2/log(x)^(k+1)), for any given positive integer k, where d_i are constants, d_1 = 315/(4*Pi^4) = 0.808446... (De Koninck and Jakimczuk, 2024).

A370834 a(n) is the greatest prime dividing the n-th powerful number, for n >= 2; a(1)=1.

Original entry on oeis.org

1, 2, 2, 3, 2, 5, 3, 2, 3, 7, 2, 3, 3, 5, 3, 11, 5, 2, 3, 13, 7, 5, 3, 5, 3, 2, 3, 17, 3, 7, 19, 7, 5, 3, 7, 11, 5, 2, 23, 3, 5, 3, 5, 13, 3, 7, 5, 29, 3, 5, 31, 11, 3, 5, 2, 11, 5, 3, 17, 7, 3, 7, 11, 13, 37, 7, 19, 13, 7, 5, 41, 3, 7, 5, 43, 11, 3, 5, 5, 2, 23
Offset: 1

Views

Author

Amiram Eldar, Mar 03 2024

Keywords

Crossrefs

Programs

  • Mathematica
    s[n_] := Module[{f = FactorInteger[n]}, If[n == 1 || AllTrue[f[[;; , 2]], # > 1 &], f[[-1, 1]], Nothing]]; Array[s, 4000]
  • PARI
    lista(kmax) = {my(f); print1(1, ", "); for(k = 2, kmax, f = factor(k); if(vecmin(f[, 2]) > 1, print1(f[#f~, 1], ", ")));}

Formula

a(n) = A006530(A001694(n)).
Sum_{A001694(n) <= x} a(n) = Sum_{i=1..k} e_i * x/log(x)^i + O(x/log(x)^(k+1)), for any given positive integer k, where e_i are constants, e_1 = zeta(2)*zeta(3)/zeta(6) = 1.943596... (A082695) (De Koninck and Jakimczuk, 2024).

A370835 a(n) is the greatest prime dividing the n-th cubefull number, for n >= 2; a(1)=1.

Original entry on oeis.org

1, 2, 2, 3, 2, 2, 3, 5, 2, 3, 3, 2, 7, 3, 2, 5, 3, 3, 3, 5, 2, 3, 11, 3, 3, 5, 2, 3, 13, 7, 3, 7, 5, 5, 3, 3, 5, 2, 17, 5, 3, 7, 3, 3, 19, 3, 3, 5, 2, 7, 5, 5, 3, 11, 7, 3, 23, 3, 11, 3, 5, 5, 2, 7, 5, 3, 13, 7, 3, 5, 3, 11, 7, 3, 29, 5, 5, 3, 7, 13, 31, 5, 3, 5
Offset: 1

Views

Author

Amiram Eldar, Mar 03 2024

Keywords

Crossrefs

Programs

  • Mathematica
    s[n_] := Module[{f = FactorInteger[n]}, If[n == 1 || AllTrue[f[[;; , 2]], # > 2 &], f[[-1, 1]], Nothing]]; Array[s, 32000]
  • PARI
    lista(kmax) = {my(f); print1(1, ", "); for(k = 2, kmax, f = factor(k); if(vecmin(f[, 2]) > 2, print1(f[#f~, 1], ", ")));}

Formula

a(n) = A006530(A036966(n)).
Sum_{A036966(n) <= x} a(n) = Sum_{i=1..k} e_i * x^(2/3)/log(x)^i + O(x^(2/3)/log(x)^(k+1)), for any given positive integer k, where e_i are constants, e_1 = (3/2) * Product_{p prime} (1 + Sum_{i>=3} 1/p^(2*i/3)) = 3.44968588450293915243... (De Koninck and Jakimczuk, 2024).

A117213 a(n) = smallest term of sequence A002110 divisible by n-th squarefree positive integer.

Original entry on oeis.org

1, 2, 6, 30, 6, 210, 30, 2310, 30030, 210, 30, 510510, 9699690, 210, 2310, 223092870, 30030, 6469693230, 30, 200560490130, 2310, 510510, 210, 7420738134810, 9699690, 30030, 304250263527210, 210, 13082761331670030, 223092870
Offset: 1

Views

Author

Leroy Quet, Mar 03 2006

Keywords

Examples

			10 is the 7th squarefree integer. And 2*3*5 = 30 is the smallest primorial number divisible by 10 = 2*5. So a(7) = 30.
		

Crossrefs

Programs

  • Maple
    issquarefree := proc(n::integer) local nf, ifa, lar ; nf := op(2,ifactors(n)) ; for ifa from 1 to nops(nf) do lar := op(1,op(ifa,nf)) ; if op(2,op(ifa,nf)) >= 2 then RETURN(0) ; fi ; od : RETURN(lar) ; end: primor := proc(n::integer) local resul, nepr ; resul :=2 ; nepr :=3 ; while nepr <= n do resul := resul*nepr ; nepr:=nextprime(nepr) ; od : RETURN(resul) ; end: printf("1,") ; for n from 2 to 100 do lfa := issquarefree(n) ; if lfa > 0 then printf("%a,",primor(lfa) ) ; fi ; od : # R. J. Mathar, Apr 02 2006
  • Mathematica
    Select[Array[Which[# == 1, 1, SquareFreeQ@ #, Product[Prime@ i, {i, PrimePi@ FactorInteger[#][[-1, 1]]}], True, 0] &, 50], # > 0 & ] (* Michael De Vlieger, Sep 30 2017 *)

Formula

For n >= 2, a(n) = product of the primes <= A073482(n).

Extensions

More terms from R. J. Mathar, Apr 02 2006

A304180 If n = Product (p_j^k_j) then a(n) = max{p_j}^max{k_j}.

Original entry on oeis.org

1, 2, 3, 4, 5, 3, 7, 8, 9, 5, 11, 9, 13, 7, 5, 16, 17, 9, 19, 25, 7, 11, 23, 27, 25, 13, 27, 49, 29, 5, 31, 32, 11, 17, 7, 9, 37, 19, 13, 125, 41, 7, 43, 121, 25, 23, 47, 81, 49, 25, 17, 169, 53, 27, 11, 343, 19, 29, 59, 25, 61, 31, 49, 64, 13, 11, 67, 289, 23, 7, 71, 27, 73, 37, 25
Offset: 1

Views

Author

Ilya Gutkovskiy, May 07 2018

Keywords

Examples

			a(40) = 125 because 40 = 2^3*5^1, max{2,5} = 5, max{3,1} = 3 and 5^3 = 125.
		

Crossrefs

Programs

  • Mathematica
    Table[(FactorInteger[n][[-1, 1]])^(Max @@ Last /@ FactorInteger[n]), {n, 75}]
  • PARI
    a(n) = if(n == 1, 1, my(f = factor(n), p = f[, 1], e = f[, 2]); vecmax(p)^vecmax(e)); \\ Amiram Eldar, Sep 08 2024

Formula

a(n) = A006530(n)^A051903(n).
a(p^k) = p^k where p is a prime.
a(A005117(k)) = A073482(k).
a(A002110(k)) = A000040(k).

A318411 Least k (>1) such that m^k == m mod A005117(n) for 0 <= m <= A005117(n) - 1.

Original entry on oeis.org

2, 3, 5, 3, 7, 5, 11, 13, 7, 5, 17, 19, 7, 11, 23, 13, 29, 5, 31, 11, 17, 13, 37, 19, 13, 41, 7, 43, 23, 47, 17, 53, 21, 19, 29, 59, 61, 31, 13, 11, 67, 23, 13, 71, 73, 37, 31, 13, 79, 41, 83, 17, 43, 29, 89, 13, 31, 47, 37, 97, 101, 17, 103, 13, 53, 107, 109, 21, 37, 113, 19
Offset: 2

Views

Author

Seiichi Manyama, Aug 26 2018

Keywords

Comments

This sequence is different from A073482.

Examples

			A005117(5) = 6.
    0^3  =   0 == 0 mod 6,
    1^3  =   1 == 1 mod 6,
    2^3  =   8 == 2 mod 6,
    3^3  =  27 == 3 mod 6,
    4^3  =  64 == 4 mod 6,
    5^3  = 125 == 5 mod 6.
------------------------------------------------
A005117(23) = 35.
    0^13 =                    0 ==  0 mod 35,
    1^13 =                    1 ==  1 mod 35,
    2^13 =                 8192 ==  2 mod 35,
   ...
   34^13 = 81138303245565435904 == 34 mod 35.
------------------------------------------------
------+------------+------
   n  | A005117(n) | a(n)
------+------------+------
    2 |          2 |    2
    3 |          3 |    3
    4 |          5 |    5
    5 |          6 |    3
    6 |          7 |    7
    7 |         10 |    5
    8 |         11 |   11
    9 |         13 |   13
   10 |         14 |    7
   11 |         15 |    5
   12 |         17 |   17
   13 |         19 |   19
   14 |         21 |    7
   15 |         22 |   11
   16 |         23 |   23
   17 |         26 |   13
   18 |         29 |   29
   19 |         30 |    5
   20 |         31 |   31
   21 |         33 |   11
   22 |         34 |   17
   23 |         35 |   13
		

Crossrefs

Showing 1-10 of 12 results. Next