cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A318572 Squarefree numbers A005117(k) whose largest prime factor is not A318411(k).

Original entry on oeis.org

35, 55, 70, 77, 95, 105, 110, 115, 119, 143, 154, 155, 161, 165, 187, 190, 203, 209, 210, 215, 221, 230, 231, 235, 238, 247, 253, 285, 286, 287, 295, 299, 310, 319, 322, 323, 329, 330, 335, 345, 355, 357, 371, 374, 377, 385, 391, 395, 403, 406, 407, 413, 415, 418, 429, 430
Offset: 1

Views

Author

Seiichi Manyama, Aug 29 2018

Keywords

Examples

			A005117(k) is the k-th squarefree number.
A073482(k) is the largest prime factor of A005117(k).
A073482(k) = A318411(k) for 2 <= k <= 22.
-------+------------+------------+------------
    k  | A005117(k) | A073482(k) | A318411(k)
-------+------------+------------+------------
    23 |         35 |          7 |         13
    34 |         55 |         11 |         21
    44 |         70 |          7 |         13
    48 |         77 |         11 |         31
    60 |         95 |         19 |         37
    65 |        105 |          7 |         13
    69 |        110 |         11 |         21
    73 |        115 |         23 |         45
    75 |        119 |         17 |         49
    89 |        143 |         13 |         61
    94 |        154 |         11 |         31
    95 |        155 |         31 |         61
    99 |        161 |         23 |         67
   101 |        165 |         11 |         21
   115 |        187 |         17 |         81
   116 |        190 |         19 |         37
		

Crossrefs

Programs

  • Ruby
    require 'prime'
    def A(n)
      s = 1
      flag = false
      while !flag
        s += 1
        flag = true
        (1..n - 1).each{|i|
          if i != ((i ** s) % n)
            flag = false
            break
          end
        }
      end
      s
    end
    def A318572(n)
      ary = []
      i = 2
      while ary.size < n
        pq = i.prime_division
        if pq.all?{|j| j[1] == 1}
          ary << i if A(i) != pq[-1][0]
        end
        i += 1
      end
      ary
    end
    p A318572(50)
Showing 1-1 of 1 results.