A366786 a(n) = A073481(n)*A005117(n).
1, 4, 9, 25, 12, 49, 20, 121, 169, 28, 45, 289, 361, 63, 44, 529, 52, 841, 60, 961, 99, 68, 175, 1369, 76, 117, 1681, 84, 1849, 92, 2209, 153, 2809, 275, 171, 116, 3481, 3721, 124, 325, 132, 4489, 207, 140, 5041, 5329, 148, 539, 156, 6241, 164, 6889, 425, 172
Offset: 1
Examples
Let b(n) = A005117(n). a(2) = 4 = b(2)*lpf(b(2)) = 2*lpf(2) = 2*2. In {2*A000079}, 4 is the second term. a(5) = 12 = b(5)*lpf(b(5)) = 6*lpf(6) = 6*2. In {6*A003586}, 12 is the second term.. a(11) = 45 = b(11)*lpf(b(11)) = 15*lpf(15) = 15*3. In {15*A003593}, 45 is the second term, etc.
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Mathematica
nn = 120; s = Select[Range[nn], SquareFreeQ]; Array[#*FactorInteger[#][[1, 1]] &[s[[#]]] &, Length[s]]
-
PARI
apply(x->(if (x==1,1, x*vecmin(factor(x)[,1]))), select(issquarefree, [1..150])) \\ Michel Marcus, Dec 17 2023
-
Python
from math import isqrt from sympy import mobius, primefactors def A366786(n): def f(x): return n+x-sum(mobius(k)*(x//k**2) for k in range(1, isqrt(x)+1)) def bisection(f,kmin=0,kmax=1): while f(kmax) > kmax: kmax <<= 1 while kmax-kmin > 1: kmid = kmax+kmin>>1 if f(kmid) <= kmid: kmax = kmid else: kmin = kmid return kmax return (m:=bisection(f))*min(primefactors(m),default=1) # Chai Wah Wu, Aug 31 2024
Comments