cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A073530 a(n) = (1/n)*Sum_{k=0..n} binomial(n, k)*binomial(n+k, k+1)*binomial(n+k, k) with a(0) = 1.

Original entry on oeis.org

1, 3, 22, 225, 2706, 35861, 507060, 7510005, 115175530, 1815002145, 29231242206, 479251119815, 7975209124260, 134398986236625, 2289535943534920, 39370761619959165, 682603570436824602, 11921040322642855193
Offset: 0

Views

Author

Karol A. Penson, Aug 29 2002

Keywords

Crossrefs

Programs

  • Magma
    A073530:= func< n | n eq 0 select 1 else (1/n)*(&+[Binomial(n,j)* Binomial(n+j,j+1)*Binomial(n+j,j): j in [0..n]]) >;
    [A073530(n): n in [0..30]]; // G. C. Greubel, Dec 27 2022
    
  • Maple
    p3 := x^3+5*x^2+39*x-2; p4 := x^4+4*x^3+30*x^2-20*x+1;
    y := hypergeom([1/12, 5/12], [1], -1728*p3*x^4/p4^3)/p4^(1/4);
    a1 := p3/(5*x^2+8*x); a2 := (13*x^3-197*x^2-60*x+16)/(5*x^2+8*x)^2;
    ogf := a1*y - Int(a2*y,x) - 89/32;
    series(ogf,x=0,20);  # Mark van Hoeij, Apr 03 2013
  • Mathematica
    Table[ HypergeometricPFQ[{n+1,n+1,-n}, {1,2}, -1], {n,0,20}] (* Robert G. Wilson v *)
  • SageMath
    def A073530(n):
        if (n==0): return 1
        else: return sum(binomial(n,j)*binomial(n+j,j+1)*binomial(n+j,j) for j in range(n+1))/n
    [A073530(n) for n in range(31)] # G. C. Greubel, Dec 27 2022

Formula

a(n) = hypergeometric3F2([n+1, n+1, -n], [1, 2], -1).
Recurrence: 2*(n-1)*n*(n+1)*(59*n^2 - 235*n + 216)*a(n) = 3*(n-1)*(767*n^4 - 3822*n^3 + 6065*n^2 - 3602*n + 720)*a(n-1) + (n-2)*(n-1)*(295*n^3 - 1470*n^2 + 2051*n - 792)*a(n-2) + (n-3)^2*(n-2)*(59*n^2 - 117*n + 40)*a(n-3). - Vaclav Kotesovec, Mar 02 2014
a(n) ~ c * d^n/n^2, where d = 1/6*(39 + (61128 - 177*sqrt(177))^(1/3) + (3*(20376 + 59*sqrt(177)))^(1/3)) = 19.62866250831184052... is the root of the equation 2*d^3 - 39*d^2 - 5*d = 1 and c = sqrt(1/2 + sqrt(231/59) * cosh(arccosh(51 * sqrt(177/77)/77)/3)/2)/Pi = 0.38852216850573971010943128486103656013508... - Vaclav Kotesovec, Mar 02 2014, updated Mar 17 2024