cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A073613 Triangular numbers which are the sum of two squares.

Original entry on oeis.org

0, 1, 10, 36, 45, 136, 153, 325, 666, 820, 1225, 1378, 2080, 2628, 2701, 3240, 3321, 4005, 4753, 5050, 6786, 7381, 9316, 10440, 10585, 11026, 14365, 16290, 18721, 19306, 25425, 27028, 27261, 29161, 29890, 32896, 33930, 41616, 41905, 42778
Offset: 1

Views

Author

Jason Earls, Aug 29 2002

Keywords

Comments

The squares may be zero.

Examples

			0 = A000217(0) = A001481(1) = 0^2 + 0^2 is listed here as a(1).
1 = A000217(1) = A001481(2) = 1^2 + 0^2 is listed here as a(2).
10 = A000217(4) = A001481(8) = 1^2 + 9^2 is listed here as a(3).
		

Crossrefs

Cf. A000217 (triangular numbers), A001481 (sums of two squares).

Programs

  • Maple
    filter:= proc(n)
      andmap(t -> (t[1] mod 4 <> 3 or t[2]::even), ifactors(n)[2])
    end proc:
    select(filter, [seq(i*(i+1)/2, i=0..500)]); # Robert Israel, Nov 22 2017
  • Mathematica
    t = Range[0, 250]^2; t1 = Flatten[Table[a + b, {a, t}, {b, t}]]; t2 = Accumulate[Range[300]]; Intersection[t1, t2] (* Jayanta Basu, Jul 03 2013 *)
    Select[Union[Total/@Tuples[Range[0,300]^2,2]],OddQ[Sqrt[8#+1]]&] (* Harvey P. Dale, Apr 22 2015 *)
  • PARI
    is_A073613(n)=is_A000217(n)&&is_A001481(n) \\ M. F. Hasler, Nov 20 2017
    
  • Python
    from itertools import count, islice
    from sympy import factorint
    def A073613_gen(): # generator of terms
        return filter(lambda n:all(p & 3 != 3 or e & 1 == 0 for p, e in factorint(n).items()),(m*(m+1)//2 for m in count(0)))
    A073613_list = list(islice(A073613_gen(),30)) # Chai Wah Wu, Jun 28 2022

Formula

Intersection of A000217 and A001481.

Extensions

Edited and initial 0 added by M. F. Hasler, Nov 20 2017