A073613 Triangular numbers which are the sum of two squares.
0, 1, 10, 36, 45, 136, 153, 325, 666, 820, 1225, 1378, 2080, 2628, 2701, 3240, 3321, 4005, 4753, 5050, 6786, 7381, 9316, 10440, 10585, 11026, 14365, 16290, 18721, 19306, 25425, 27028, 27261, 29161, 29890, 32896, 33930, 41616, 41905, 42778
Offset: 1
Examples
0 = A000217(0) = A001481(1) = 0^2 + 0^2 is listed here as a(1). 1 = A000217(1) = A001481(2) = 1^2 + 0^2 is listed here as a(2). 10 = A000217(4) = A001481(8) = 1^2 + 9^2 is listed here as a(3).
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
filter:= proc(n) andmap(t -> (t[1] mod 4 <> 3 or t[2]::even), ifactors(n)[2]) end proc: select(filter, [seq(i*(i+1)/2, i=0..500)]); # Robert Israel, Nov 22 2017
-
Mathematica
t = Range[0, 250]^2; t1 = Flatten[Table[a + b, {a, t}, {b, t}]]; t2 = Accumulate[Range[300]]; Intersection[t1, t2] (* Jayanta Basu, Jul 03 2013 *) Select[Union[Total/@Tuples[Range[0,300]^2,2]],OddQ[Sqrt[8#+1]]&] (* Harvey P. Dale, Apr 22 2015 *)
-
PARI
is_A073613(n)=is_A000217(n)&&is_A001481(n) \\ M. F. Hasler, Nov 20 2017
-
Python
from itertools import count, islice from sympy import factorint def A073613_gen(): # generator of terms return filter(lambda n:all(p & 3 != 3 or e & 1 == 0 for p, e in factorint(n).items()),(m*(m+1)//2 for m in count(0))) A073613_list = list(islice(A073613_gen(),30)) # Chai Wah Wu, Jun 28 2022
Extensions
Edited and initial 0 added by M. F. Hasler, Nov 20 2017
Comments