A073641 a(1) = 2; a(n) = smallest prime not included earlier such that concatenation of two successive terms is a prime.
2, 3, 7, 19, 13, 61, 31, 37, 67, 79, 103, 43, 73, 127, 139, 97, 151, 157, 109, 199, 181, 193, 163, 211, 229, 223, 241, 271, 277, 331, 283, 397, 337, 313, 307, 367, 457, 421, 349, 373, 379, 433, 439, 409, 463, 523, 487, 601, 541, 547, 499, 571, 673, 613, 577
Offset: 1
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
N:= 10000: # to get all terms before the first one > N A[1]:= 2: Primes:= Vector(select(isprime,[seq(2*i+1 , i=1..floor((N-1)/2))])): Nprimes:= LinearAlgebra:-Dimension(Primes): Next:= Vector(Nprimes): Prev:= Vector(Nprimes): for i from 1 to Nprimes-1 do Next[i]:= i+1; Prev[i+1]:= i od: first:= 1: found:= true: for n from 2 while found do i:= first; found:= false; while i <> 0 do p:= Primes[i]; if isprime(10^(1+ilog10(p))*A[n-1] + p) then found:= true; A[n]:= p; if i = first then first:= Next[first] else Next[Prev[i]]:= Next[i] fi; if Next[i] <> 0 then Prev[Next[i]]:= Prev[i] fi; break fi; i:= Next[i]; od od: seq(A[i],i=1..n-2); # Robert Israel, Aug 25 2015
-
Mathematica
t = {2}; Do[i = 2; While[! PrimeQ[FromDigits[Flatten[IntegerDigits[{Last[t], x = Prime[i]}]]]] || MemberQ[t, x], i++]; AppendTo[t, x], {54}]; t (* Jayanta Basu, Jul 03 2013 *)
Formula
a(n) = A075609(n) for n>1. - Alexander Adamchuk, Aug 15 2006
Extensions
More terms from Gabriel Cunningham (gcasey(AT)mit.edu), Apr 11 2003
Corrected and extended by Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Apr 20 2003
Comments