cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A073681 Smallest of three consecutive primes whose sum is a prime.

Original entry on oeis.org

5, 7, 11, 17, 19, 23, 29, 31, 41, 53, 61, 67, 71, 79, 83, 101, 109, 139, 149, 157, 163, 197, 211, 229, 271, 281, 283, 293, 311, 337, 347, 349, 379, 389, 401, 409, 431, 449, 457, 463, 467, 491, 499, 509, 547, 617, 641, 653, 659, 661, 701, 719, 743, 751, 757
Offset: 1

Views

Author

Amarnath Murthy, Aug 11 2002

Keywords

Crossrefs

Programs

  • Magma
    [NthPrime(n): n in [0..200] | IsPrime(NthPrime(n)+NthPrime(n+1)+ NthPrime(n+2))]; // Vincenzo Librandi, May 06 2015
  • Maple
    t0:=[];
    t1:=[];
    t2:=[];
    for i from 1 to 1000 do
    t3:=ithprime(i)+ithprime(i+1)+ithprime(i+2);
    if isprime(t3) then
    t0:=[op(t0),i];
    t1:=[op(t1),ithprime(i)];
    t2:=[op(t2),ithprime(i+2)];
    fi;
    od:
    t1;
  • Mathematica
    Transpose[Select[Partition[Prime[Range[200]],3,1],PrimeQ[Total[#]]&]] [[1]] (* Harvey P. Dale, Jan 25 2012 *)
  • PARI
    forprime(p=1,1000, pp=nextprime(p+1); if(isprime(p+pp+nextprime(pp+1)),print1(p",")))
    
  • PARI
    A073681(n,print_all=0,start=3)={my(r,q=1);forprime(p=start,, isprime(r+(r=q)+(q=p)) & (n-- ||return(precprime(r-1))) & print_all & print1(precprime(r-1)","))} \\ M. F. Hasler, Dec 18 2012
    

Formula

Conjecture: for n -> oo, a(n) ~ prime(n) * (log(prime(n)))^C, where C = 8/Pi^2 (cf. A217739). - Alain Rocchelli, Sep 04 2023

Extensions

More terms from Ralf Stephan, Mar 20 2003
More cross-references from Harvey P. Dale, Jun 05 2013