cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A073702 a(n) = A073145(n)^2.

Original entry on oeis.org

9, 1, 1, 25, 25, 1, 121, 225, 9, 529, 1681, 441, 1849, 11025, 6889, 4225, 64009, 73441, 2209, 326041, 632025, 31329, 1413721, 4669921, 1320201, 4844401, 30371121, 19882681, 10582009, 174847729, 208196041, 4190209, 882030601, 1770810561
Offset: 0

Views

Author

Mario Catalani (mario.catalani(AT)unito.it), Aug 04 2002

Keywords

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 40); Coefficients(R!( (9+x+ 10*x^2-28*x^3-7*x^4-x^5)/(1+x^2-6*x^3-3*x^4-2*x^5+x^6) )); // G. C. Greubel, Apr 23 2019
    
  • Mathematica
    CoefficientList[Series[(9+x+10x^2-28x^3-7x^4-x^5)/(1+x^2-6x^3-3x^4-2x^5 +x^6), {x, 0, 40}], x]
    LinearRecurrence[{0,-1,6,3,2,-1},{9,1,1,25,25,1},40] (* Harvey P. Dale, Feb 14 2015 *)
  • PARI
    my(x='x+O('x^40)); Vec((9+x+10*x^2-28*x^3-7*x^4-x^5)/(1+x^2-6*x^3 -3*x^4-2*x^5+x^6)) \\ G. C. Greubel, Apr 23 2019
    
  • Sage
    ((9+x+10*x^2-28*x^3-7*x^4-x^5)/(1+x^2-6*x^3-3*x^4-2*x^5+x^6) ).series(x, 40).coefficients(x, sparse=False) # G. C. Greubel, Apr 23 2019

Formula

a(n) = -a(n-2) + 6*a(n-3) + 3*a(n-4) + 2*a(n-5) - a(n-6) with a(0)=9, a(1)=1, a(2)=1, a(3)=25, a(4)=25, a(5)=1.
G.f.: (9+x+10*x^2-28*x^3-7*x^4-x^5)/(1+x^2-6*x^3-3*x^4-2*x^5+x^6).
a(n) = 2*A001644(n) + A073496(n).