cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A073706 a(n) = Sum_{ d divides n } (n/d)^(3d).

Original entry on oeis.org

1, 9, 28, 129, 126, 1458, 344, 8705, 20413, 49394, 1332, 1104114, 2198, 2217546, 16305408, 33820673, 4914, 532253187, 6860, 2392632274, 10500716072, 8591716802, 12168, 422182489826, 30517593751, 549760658274, 7625984925160
Offset: 1

Views

Author

Paul D. Hanna, Aug 04 2002

Keywords

Examples

			a(10) = (10/1)^(3*1) +(10/2)^(3*2) +(10/5)^(3*5) +(10/10)^(3*10) = 49394 because positive divisors of 10 are 1, 2, 5, 10.
		

Crossrefs

Sum_{ d divides n } (n/d)^(k*d): A000005 (k=0), A055225 (k=1), A073705 (k=2), this sequence (k=3).

Programs

  • Mathematica
    Table[Total[Quotient[n, x = Divisors[n]]^(3*x)], {n, 27}] (* Jayanta Basu, Jul 08 2013 *)

Formula

G.f.: Sum_{n>=1} -log(1 - (n^3)*x^n)/n = Sum_{n>=1} a(n) x^n/n.
G.f.: Sum_{k>=1} k^3*x^k/(1-k^3*x^k). - Benoit Cloitre, Apr 21 2003