cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A073728 a(n) = Sum_{k=0..n} S(k), where S(n) are the tribonacci generalized numbers A001644.

Original entry on oeis.org

3, 4, 7, 14, 25, 46, 85, 156, 287, 528, 971, 1786, 3285, 6042, 11113, 20440, 37595, 69148, 127183, 233926, 430257, 791366, 1455549, 2677172, 4924087, 9056808, 16658067, 30638962, 56353837, 103650866, 190643665, 350648368, 644942899
Offset: 0

Views

Author

Mario Catalani (mario.catalani(AT)unito.it), Aug 06 2002

Keywords

Crossrefs

Partial sums of A001644.
Cf. A000073.

Programs

  • Magma
    I:=[3,4,7]; [n le 3 select I[n] else Self(n-1)+Self(n-2) +Self(n-3): n in [1..40]]; // Vincenzo Librandi, Mar 27 2015
    
  • Maple
    A:= gfun[rectoproc]({a(n)=a(n-1)+a(n-2)+a(n-3), a(0)=3, a(1)=4, a(2)=7},a(n),remember):
    seq(A(n),n=0..100); # Robert Israel, Mar 26 2015
  • Mathematica
    CoefficientList[Series[(3+x)/(1-x-x^2-x^3), {x, 0, 40}], x]
  • PARI
    my(x='x+O('x^40)); Vec((3+x)/(1-x-x^2-x^3)) \\ G. C. Greubel, Apr 09 2019
    
  • Sage
    ((3+x)/(1-x-x^2-x^3)).series(x, 40).coefficients(x, sparse=False) # G. C. Greubel, Apr 09 2019

Formula

a(n) = a(n-1) + a(n-2) + a(n-3), a(0)=3, a(1)=4, a(2)=7.
G.f.: (3+x)/(1-x-x^2-x^3).
a(n) = 3*T(n+1) + T(n), where T(n) are the tribonacci numbers A000073.
a(n) = (S(n+3) - S(n+1))/2, where S(n) = A001644(n). - Michael D. Weiner, Mar 27 2015
a(n) = Sum_{r root of x^3-x^2-x-1} r^n/(-r^2+r+2). - Fabian Pereyra, Nov 21 2024