A073742 Decimal expansion of sinh(1).
1, 1, 7, 5, 2, 0, 1, 1, 9, 3, 6, 4, 3, 8, 0, 1, 4, 5, 6, 8, 8, 2, 3, 8, 1, 8, 5, 0, 5, 9, 5, 6, 0, 0, 8, 1, 5, 1, 5, 5, 7, 1, 7, 9, 8, 1, 3, 3, 4, 0, 9, 5, 8, 7, 0, 2, 2, 9, 5, 6, 5, 4, 1, 3, 0, 1, 3, 3, 0, 7, 5, 6, 7, 3, 0, 4, 3, 2, 3, 8, 9, 5, 6, 0, 7, 1, 1, 7, 4, 5, 2, 0, 8, 9, 6, 2, 3, 3, 9, 1, 8, 4, 0, 4, 1
Offset: 1
Examples
1.17520119364380145688238185059...
References
- S. Selby, editor, CRC Basic Mathematical Tables, CRC Press, 1970, p. 218.
- Jerome Spanier and Keith B. Oldham, "Atlas of Functions", Hemisphere Publishing Corp., 1987, chapter 2, equation 2:5:7 at page 20.
Links
- G. C. Greubel, Table of n, a(n) for n = 1..5000
- Eric Weisstein's World of Mathematics, Hyperbolic Sine.
- Eric Weisstein's World of Mathematics, Hyperbolic Functions.
- Eric Weisstein's World of Mathematics, Factorial Sums.
- Index entries for transcendental numbers.
Crossrefs
Programs
-
Mathematica
First@ RealDigits@ N[Sinh@ 1, 120] (* Michael De Vlieger, Sep 04 2016 *)
-
PARI
sinh(1)
Formula
Equals (e - e^(-1))/2.
Equals sin(i)/i. - N. J. A. Sloane, Feb 12 2010
Equals Sum_{n>=0} 1/A009445(n). See Gradsteyn-Ryzhik (0.245.6.) - R. J. Mathar, Oct 27 2012
Continued fraction representation: sinh(1) = 1 + 1/(6 - 6/(21 - 20/(43 - 42/(73 - ... - (2*n - 1)*(2*n - 2)/((2*n*(2*n + 1) + 1) - ... ))))). See A051397 for proof. Cf. A049469. - Peter Bala, Sep 02 2016
Equals Product_{k>=1} 1 + 1/(k * Pi)^2. - Amiram Eldar, Jul 16 2020
Comments