A073744 Decimal expansion of tanh(1).
7, 6, 1, 5, 9, 4, 1, 5, 5, 9, 5, 5, 7, 6, 4, 8, 8, 8, 1, 1, 9, 4, 5, 8, 2, 8, 2, 6, 0, 4, 7, 9, 3, 5, 9, 0, 4, 1, 2, 7, 6, 8, 5, 9, 7, 2, 5, 7, 9, 3, 6, 5, 5, 1, 5, 9, 6, 8, 1, 0, 5, 0, 0, 1, 2, 1, 9, 5, 3, 2, 4, 4, 5, 7, 6, 6, 3, 8, 4, 8, 3, 4, 5, 8, 9, 4, 7, 5, 2, 1, 6, 7, 3, 6, 7, 6, 7, 1, 4, 4, 2, 1, 9, 0
Offset: 0
Examples
0.76159415595576488811945828260...
References
- S. Selby, editor, CRC Basic Mathematical Tables, CRC Press, 1970, p. 218.
Links
- Ivan Panchenko, Table of n, a(n) for n = 0..1000
- Eric Weisstein's World of Mathematics, Hyperbolic Tangent
- Eric Weisstein's World of Mathematics, Hyperbolic Functions
- Index entries for transcendental numbers
Crossrefs
Programs
-
Mathematica
RealDigits[Tanh[1], 10, 100][[1]] (* Amiram Eldar, Aug 19 2020 *)
-
PARI
tanh(1)
Formula
Equals Sum_{k>=1} bernoulli(2*k)*2^(2*k)*(2^(2*k)-1)/(2*k)!, where bernoulli(k) = A027641(k)/A027642(k) is the k-th Bernoulli number. - Amiram Eldar, Aug 19 2020
Equal to the continued fraction [0;1,3,5,...,2n-1,...]. - Thomas Ordowski, Oct 22 2024
Equals 1-A349003. - Hugo Pfoertner, Oct 22 2024
Comments