cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A073752 Greatest common divisor of n/spf(n) and n/gpf(n) where spf(n) is the smallest and gpf(n) is the greatest prime factor of n (see A020639, A006530).

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 4, 3, 1, 1, 2, 1, 1, 1, 8, 1, 3, 1, 2, 1, 1, 1, 4, 5, 1, 9, 2, 1, 3, 1, 16, 1, 1, 1, 6, 1, 1, 1, 4, 1, 3, 1, 2, 3, 1, 1, 8, 7, 5, 1, 2, 1, 9, 1, 4, 1, 1, 1, 6, 1, 1, 3, 32, 1, 3, 1, 2, 1, 5, 1, 12, 1, 1, 5, 2, 1, 3, 1, 8, 27, 1, 1, 6, 1, 1, 1, 4, 1, 9, 1, 2, 1, 1, 1, 16, 1, 7, 3, 10, 1
Offset: 1

Views

Author

Reinhard Zumkeller, Aug 07 2002

Keywords

Comments

a(n) = if n=p^k (p prime, k>0) then p^(k-1) else n/(spf(n)*gpf(n)).

Crossrefs

A073753(n) = a(a(n)).

Programs

  • Mathematica
    gc[n_]:=Module[{fi=Transpose[FactorInteger[n]][[1]]},GCD[n/First[fi], n/Last[ fi]]]; Array[gc,110] (* Harvey P. Dale, Jun 17 2012 *)

Formula

a(n) = GCD(A032742(n), A052126(n)).