cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 23 results. Next

A083243 Numbers k for which there are more divisors and coprimes than other numbers less than k: A045763(k) < A073757(k) or A045763(k) < k/2 or A073757(k) > k/2.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 43, 44, 45, 46, 47, 48, 49, 51, 52, 53, 55, 56, 57, 58, 59, 61, 62, 63, 64, 65, 67, 68, 69, 71, 73, 74, 75, 76
Offset: 1

Views

Author

Labos Elemer, May 07 2003

Keywords

Examples

			30 is not in the sequence because d(30) + phi(30) - 1 = 8 + 8 - 1 = 15. There are as many divisors and coprimes as there are numbers j <= 30 that neither divide nor are coprime to 30.
50 is not here because d(50) + phi(50) - 1 = 6 + 20 - 1 = 25. There are as many divisors and coprimes as there are numbers j < 50 that neither divide nor are coprime to 50.
146 is here because d(146) + phi(146) - 1 = 4 + 72 - 1 = 75; 146/2 = 73, and 75 > 73.
61455 is here because d(61455) + phi(61455) - 1 = 16 + 30720 - 1 = 30735; 61455/2 = 30727 + 1/2, and 30735 > 61455/2.
		

Crossrefs

Programs

  • Mathematica
    Do[r=EulerPhi[n]; d=DivisorSigma[0, n]; u=n-r-d+1; If[Greater[n-u, n/2], Print[n, {d, r, u}]], {n, 1, 100}]
    (* Second program: *)
    Select[Range[120], DivisorSigma[0, #] + EulerPhi[#] - 1 > #/2 &] (* Michael De Vlieger, Aug 22 2023 *)

Formula

{ k : d(k) + phi(k) - 1 > k/2 }.

Extensions

Data corrected and entry edited by Michael De Vlieger, Aug 22 2023

A083244 k is in the sequence iff the number of numbers unrelated to k is larger than that of related ones[=divisors and coprimes] to k: A045763(k) > A073757(k) or A045763(k) > k/2 or A073757(k) < k/2.

Original entry on oeis.org

42, 54, 60, 66, 70, 72, 78, 84, 90, 96, 98, 100, 102, 108, 110, 114, 120, 126, 130, 132, 138, 140, 144, 150, 154, 156, 160, 162, 168, 170, 174, 180, 182, 186, 190, 192, 196, 198, 200, 204, 210, 216, 220, 222, 224, 228, 230, 234, 238, 240, 242, 246, 250, 252
Offset: 1

Views

Author

Labos Elemer, May 07 2003

Keywords

Examples

			k = 42 is a term because d = 8 divisors, r = 12 coprimes and u = 23 unrelated belong to it: u = 23 > 19 = 8 + 12 - 1 = d + r - 1.
		

Crossrefs

Programs

  • Maple
    filter:= n -> n > 2*(numtheory:-tau(n) + numtheory:-phi(n)-1):
    select(filter, [$1..1000]); # Robert Israel, May 15 2017
  • Mathematica
    Do[r=EulerPhi[n]; d=DivisorSigma[0, n]; u=n-d-r+1; If[Greater[u, n/2], Print[n, {d, r, u}]], {n, 1, 100}]
    (* Second program: *)
    Select[Range@ 256, # - (DivisorSigma[0, #] + EulerPhi[#] - 1) > #/2 &] (* Michael De Vlieger, Jul 22 2017 *)

Formula

Numbers k such that k - d(k) - phi(k) + 1 > k/2.

A083245 Difference between numbers of related and numbers of unrelated numbers belonging to n: a(n) = A073757(n)-A045763(n) = (n-u(n))-u(n) = n-2*A045763(n) = 2*A073757(n)-n.

Original entry on oeis.org

1, 2, 3, 4, 5, 4, 7, 6, 7, 4, 11, 6, 13, 4, 7, 8, 17, 4, 19, 6, 9, 4, 23, 6, 19, 4, 15, 6, 29, 0, 31, 10, 13, 4, 19, 4, 37, 4, 15, 6, 41, -4, 43, 6, 13, 4, 47, 2, 39, 0, 19, 6, 53, -4, 31, 6, 21, 4, 59, -6, 61, 4, 19, 12, 37, -12, 67, 6, 25, -8, 71, -2, 73, 4, 15, 6, 49, -16, 79, 2, 35, 4, 83, -14, 49, 4, 31, 6, 89, -20, 59, 6, 33, 4, 55, -10, 97, -4
Offset: 1

Views

Author

Labos Elemer, May 07 2003

Keywords

Comments

There are only 2 cases [n=30, n=50] below 10^7 such that a(n) = 0.
No other zeros found up to 10^9. - Michel Marcus, Jul 30 2017

Examples

			n=37, d=2,r=36,u=0, a(37)=2+36-1-0=37>0; primes are fixed points.
n=42, d=8,r=12,u=23,a(42)=8+12-1-23=-4<0, terms of A083244;
n=30, d=8,r=8,u=15, a(30)=0;
n=50, d=6,r=20,u=25,a(50)=0.
		

Crossrefs

Programs

  • Mathematica
    Table[2*(DivisorSigma[0, w]+EulerPhi[w]-1)-w, {w, 1, 1000}]
  • PARI
    a(n) = 2*(numdiv(n)+eulerphi(n)-1) - n; \\ Michel Marcus, Jul 30 2017

Formula

a(n) = 2(A000005(n)+A000010(n)-1)-n.

A083266 Sum of related numbers (counted in A073757) belonging to n: a(n) = A000203(n) + A023896(n) - 1; related = {divisor-set, RRS}.

Original entry on oeis.org

1, 3, 6, 10, 15, 17, 28, 30, 39, 37, 66, 51, 91, 65, 83, 94, 153, 92, 190, 121, 157, 145, 276, 155, 280, 197, 282, 223, 435, 191, 496, 318, 377, 325, 467, 306, 703, 401, 523, 409, 861, 347, 946, 523, 617, 577, 1128, 507, 1085, 592, 887, 721, 1431, 605, 1171
Offset: 1

Views

Author

Labos Elemer, May 13 2003

Keywords

Comments

Sum of 1 <= m <= n such that gcd(m, n) is either 1 or m. - Michael De Vlieger, Apr 07 2021.

Examples

			n=10: related terms = {1,2,5,10,3,7,9}, sum = 1+2+5+10+1+3+7+9-1 = 37 = a(10).
		

Crossrefs

Cf. A073757 (count), A083267 (product), A083268 (lcm).

Programs

  • Mathematica
    Table[DivisorSigma[1, n] + Total@ Select[Range[2, n - 1], GCD[n, #] == 1 &], {n, 55}] (* or *)
    {1}~Join~Array[DivisorSigma[1, #] + # EulerPhi[#]/2 - 1 &, 54, 2] (* Michael De Vlieger, Apr 07 2021 *)
  • PARI
    a(n)=if(n>1,sigma(n)+n*eulerphi(n)/2-1,1) \\ Charles R Greathouse IV, Feb 19 2013

A083250 Numbers n for which abs(A045763(n) - A073757(n)) = 3, i.e., signed difference of size of related and unrelated sets to n equals either 3 or -3.

Original entry on oeis.org

3, 825, 1755, 4641, 5313, 56865, 58395, 140049, 159152763, 361701435
Offset: 1

Views

Author

Labos Elemer, May 07 2003

Keywords

Comments

No more terms below 10^9. - Amiram Eldar, Jan 27 2019

Examples

			For n=140049: d=40 divisors, r=70026 coprimes and u=70023 unrelated numbers to n; abs(r-u) = 3.
		

Crossrefs

Programs

  • Mathematica
    Do[r=EulerPhi[n]; d=DivisorSigma[0, n]; u=n-r-d+1; df=2*u-n; If[Equal[Abs[df], 3], Print[n(*, {d, r, u}*)]], {n, 1, 100}]
  • PARI
    isok(n) = abs(n-2*eulerphi(n)-2*numdiv(n)+2) == 3; \\ Michel Marcus, Jul 30 2017

Extensions

a(9)-a(10) from Amiram Eldar, Jan 27 2019

A083251 Numbers n such that abs(A045763(n) - A073757(n)) = 2, i.e., signed difference of size of related and unrelated sets to n equals either 2 or -2.

Original entry on oeis.org

2, 48, 72, 80, 112, 176, 208, 272, 304, 368, 464, 496, 592, 656, 688, 752, 848, 944, 976, 1072, 1136, 1168, 1264, 1328, 1424, 1552, 1616, 1648, 1712, 1744, 1808, 2032, 2096, 2192, 2224, 2384, 2416, 2512, 2608, 2672, 2768, 2864, 2896
Offset: 1

Views

Author

Labos Elemer, May 07 2003

Keywords

Examples

			For n=2896: d=10 divisors, r=1440 coprimes, u=1447 unrelated or n - u = r + d - 1 = 1449 related numbers to n; thus abs(1449 - 1447) = 2.
		

Crossrefs

Programs

  • Mathematica
    Do[r=EulerPhi[n]; d=DivisorSigma[0, n]; u=n-r-d+1; df=2*u-n; If[Equal[Abs[df], 2], Print[n(*, {d, r, u}*)]], {n, 1, 3000}]

Formula

a(n) = 8 * (A076274(n-1) + 1) for n > 3, as proved by Lawrence Sze. - Ralf Stephan, Nov 16 2004

A083267 Product of related numbers (counted in A073757) belonging to n; related = {divisor-set, RRS}: a(n) = A007955(n)*A001783(n).

Original entry on oeis.org

1, 2, 6, 24, 120, 180, 5040, 6720, 60480, 18900, 39916800, 665280, 6227020800, 3783780, 201801600, 2075673600, 355687428096000, 496215720, 121645100408832000, 69837768000, 20858213376000, 604969665300, 25852016738884976640000, 12336143339520, 5170403347776995328000
Offset: 1

Views

Author

Labos Elemer, May 13 2003

Keywords

Examples

			For n = 10: related terms = {1,2,5,10,3,7,9}, product = 1*2*5*10*1*3*7*9 = 18900 = a(10).
		

Crossrefs

Cf. A073757 (count), A083266 (sum), A083268 (LCM), A083267 (product), A001783, A007955.

Programs

  • Mathematica
    a[n_] := n^(DivisorSigma[0, n]/2) * Times@@ Select[Range[n], CoprimeQ[n, #] &]; Array[a, 30] (* Amiram Eldar, Jun 20 2024 *)

Extensions

More terms from Amiram Eldar, Jun 20 2024

A083268 a(n) is the lcm of related numbers to n (counted in A073757): related = {divisor-set, RRS}.

Original entry on oeis.org

1, 2, 6, 12, 60, 30, 420, 840, 2520, 630, 27720, 4620, 360360, 90090, 120120, 720720, 12252240, 1531530, 232792560, 58198140, 77597520, 29099070, 5354228880, 892371480, 26771144400, 3346393050, 80313433200, 20078358300, 2329089562800
Offset: 1

Views

Author

Labos Elemer, May 13 2003

Keywords

Examples

			For n = 10: related terms = {1,2,5,10,3,7,9}; lcm(10,1,3,7,9) = 630 = a(10).
		

Crossrefs

Cf. A073757 (count), A083266 (sum), A083268 (LCM), A083267 (product), A038610.

Programs

  • Mathematica
    a[n_] := LCM @@ Join[{n}, Select[Range[n], CoprimeQ[n, #] &]]; Array[a, 30] (* Amiram Eldar, Jun 20 2024 *)
  • PARI
    a(n)=my(t=lcm([1..n])/n,g); while((g=gcd(t,n))>1,t/=g); t*n \\ Charles R Greathouse IV, Nov 14 2014

Formula

a(n) = lcm(n, A038610(n)).

A083252 Numbers k for which abs(A045763(k) - A073757(k)) = 5, i.e., signed difference of size of related and unrelated sets to k equals either 5 or -5.

Original entry on oeis.org

5, 105, 315, 182835, 960075, 7838265, 4291166265
Offset: 1

Views

Author

Labos Elemer, May 07 2003

Keywords

Comments

a(7), if it exists, is > 10^9. - Vaclav Kotesovec, Sep 06 2019

Examples

			For k = 960075: d = 36 divisors, r = 480000 coprimes, u = 480040 unrelated; k - u = r + d - 1 = 480035 related numbers to k; thus abs(480040 - 480035) = 5.
		

Crossrefs

Programs

  • Mathematica
    Do[r=EulerPhi[n]; d=DivisorSigma[0, n]; u=n-r-d+1; df=2*u-n; If[Equal[Abs[df], 5], Print[n(*, {d, r, u}*)]], {n, 1, 3000}]
  • PARI
    isok(n) = abs(n-2*eulerphi(n)-2*numdiv(n)+2) == 5; \\ Michel Marcus, Jul 29 2017

Extensions

a(6) from Michel Marcus, Jul 29 2017
a(7) from Amiram Eldar, Feb 02 2025

A083253 Smallest number k for which abs(A045763(k) - A073757(k)) = n, i.e., signed difference of size of related and unrelated sets to k equals either n or -n.

Original entry on oeis.org

30, 1, 2, 3, 4, 5, 8, 7, 16, 21, 32, 11, 64, 13, 84, 27, 78, 17, 200, 19, 90, 57, 140, 23, 102, 69, 120, 435, 114, 29, 132, 31, 126, 93, 392, 81, 138, 37, 156, 49, 230, 41, 168, 43, 322, 129, 260, 47, 150, 77, 180, 795, 186, 53, 204, 95, 198, 885, 280, 59, 434, 61, 228, 183
Offset: 0

Views

Author

Labos Elemer, May 07 2003

Keywords

Comments

a(258) > 10^5. - Michael De Vlieger, Jul 31 2017

Examples

			A045763(x) - A073757(x) = 0 is first satisfied at x = 30 = a(0).
		

Crossrefs

Programs

  • Mathematica
    With[{s = Table[Abs[n - 2 (DivisorSigma[0, n] + EulerPhi[n] - 1)], {n, 10^3}]}, TakeWhile[#, # > 0 &] &@ Flatten@ Map[FirstPosition[s, #] /. k_ /; MissingQ@ k -> 0 &, Range[0, Max@ s]]] (* Michael De Vlieger, Jul 31 2017 *)
  • PARI
    a(n) = {my(k = 1); while (abs(k - 2*(numdiv(k) + eulerphi(k) - 1)) != n, k++); k;} \\ Michel Marcus, Aug 01 2017

Formula

a(n) = min{x; abs(A045763(x) - A073757(x)) = n}.
a(p) = p, for p prime.
Showing 1-10 of 23 results. Next