cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A073777 a(n) = Sum_{k=1..n} -A068341(k+1)*a(n-k), a(0)=1.

Original entry on oeis.org

1, 2, 5, 10, 22, 42, 85, 162, 314, 588, 1113, 2066, 3847, 7080, 13036, 23824, 43504, 79048, 143441, 259376, 468313, 843352, 1516515, 2721470, 4877165, 8726118, 15593224, 27826634, 49602226, 88316198, 157089101, 279137436, 495566701, 879034448, 1557979289
Offset: 0

Views

Author

Paul D. Hanna, Aug 10 2002

Keywords

Comments

Recurrence relation involves the convolution of the Moebius function (A068341).
Radius of convergence of A(x) is r=0.5802946238073267...
Related limits are limit_{n->infinity} a(n) r^n/n = 0.406...(?) and limit_{n->infinity} a(n+1)/a(n) = 1.723262561763844...
This sequence is the self-convolution of A073776.

Examples

			a(4) = -A068341(2)*a(3) -A068341(3)*a(2) -A068341(4)*a(1) -A068341(5)*a(0) = 2*10 +1*5 -2*2 +1*1 = 22. A068341 begins {1,-2,-1,2,-1,4,-2,0,3,...}.
		

Crossrefs

Programs

  • Haskell
    a073777 n = a073777_list !! (n-1)
    a073777_list = 1 : f [1] where
       f xs = y : f (y : xs) where y = sum $ zipWith (*) xs ms'
       ms' = map negate $ tail a068341_list
    -- Reinhard Zumkeller, Nov 03 2015
  • Mathematica
    A068341[n_] := A068341[n] = Sum[MoebiusMu[k]*MoebiusMu[n + 1 - k], {k, 1, n}]; a[0] = 1; a[n_] := a[n] = Sum[-A068341[k + 1]*a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 33}] (* Jean-François Alcover, Oct 10 2011 *)

Formula

G.f.: A(x)= x/(Sum_{n=1..infinity} mu(n)*x^n)^2, A(0)=1, where mu(n)=Moebius function.

Extensions

Corrected by Jean-François Alcover, Oct 10 2011