cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A073830 a(n) = 4*((n-1)! + 1) + n (mod n*(n + 2)).

Original entry on oeis.org

0, 2, 0, 8, 0, 10, 56, 12, 22, 14, 0, 16, 182, 18, 34, 20, 0, 22, 380, 24, 46, 26, 552, 28, 29, 30, 58, 32, 0, 34, 992, 36, 37, 38, 74, 40, 1406, 42, 82, 44, 0, 46, 1892, 48, 94, 50, 2256, 52, 53, 54, 106, 56, 2862, 58, 59, 60, 118, 62, 0, 64, 3782, 66, 67, 68, 134, 70
Offset: 1

Views

Author

Reinhard Zumkeller, Aug 12 2002

Keywords

Crossrefs

Programs

  • Magma
    [(4*(Factorial(n-1)+1)+n) mod (n^2+2*n): n in [1..70]]; // Vincenzo Librandi, May 04 2014
  • Maple
    A073830 := proc(n)
        4*((n-1)!+1)+n ;
        modp(%,n*(n+2)) ;
    end proc:
    seq(A073830(n),n=1..60) ; # R. J. Mathar, Feb 21 2017
  • Mathematica
    a[n_] := Mod[4 ((n - 1)! + 1) + n, n (n + 2)]; Array[a, 66] (* Jean-François Alcover, Feb 22 2018 *)

Formula

a(n) = A073829(n) mod A005563(n).
For n > 1: a(n) = 0 iff (n, n+2) are twin primes (Clement, 1949).
From Bernard Schott, Nov 16 2021: (Start)
If p is an odd prime, and p+2 is composite, then a(p) = p*(p+1).
If m is composite, and m+2 is prime, then a(m) = 2*(m+2).
If n even >= 4, a(n) = n + 4.
If p prime >= 5, a(p^2) = p^2 + 4. (End)

A073831 Maximum of A073830(k) for k between A001359(n) and A001359(n+1).

Original entry on oeis.org

8, 56, 182, 552, 1406, 2862, 4556, 9506, 10712, 17292, 19460, 30102, 32942, 37442, 49952, 54522, 69432, 77006, 94556, 113906, 167690, 177662, 209306, 259590, 317532, 352242, 376382, 398792, 427062, 636006, 658532, 678152
Offset: 1

Views

Author

Reinhard Zumkeller, Aug 12 2002

Keywords

Comments

a(n) = A073830(A073832(n)); a(n) < A037074(n+2).

Programs

  • Maple
    A073831 := proc(n)
        A073830(A073832(n)) ;
    end proc:
    seq(A073831(n),n=1..50) ; # R. J. Mathar, Feb 21 2017
  • Mathematica
    f[n_] := Mod[4*((n - 1)! + 1) + n, n*(n + 2)];
    pp = Select[Prime[Range[200]], PrimeQ[# + 2] & ];
    a[n_] := Max[f /@ Range[pp[[n]], pp[[n + 1]]]];
    Array[a, Length[pp] - 1] (* Jean-François Alcover, Feb 22 2018 *)
Showing 1-2 of 2 results.