cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A073853 Indices of zeros in A079777.

Original entry on oeis.org

0, 5, 9, 12, 24, 45, 60, 65, 179, 764, 1268, 5891, 16135, 29909, 71774, 173310, 200040, 1454560, 2485272, 86430343, 92439810, 115854652, 7208007982, 17016737751, 17589706947, 24531053552, 33113576855, 80692537585, 234365843350, 266484243960, 285357252641, 426388494035, 975986718040, 1505420538689, 43633539697333
Offset: 1

Views

Author

Benoit Cloitre, Sep 02 2002

Keywords

Comments

Let b(1) = b(2) = 1, b(k) = (b(k-1) + b(k-2)) mod k; sequence gives n such that b(n) = 0.
A079777(2^31-1) = 1103802855, and A079777(2^31) = 2117709557.
No further terms below k = 5*10^10, at which point, A079777(k-1) = 6059364906669 and A079777(k) = 29451014544130. - Luca Armstrong, Apr 07 2023

Examples

			b(3) = 2 mod 3 = 2; b(4) = (2+1) mod 4 = 3; b(5) = (3+2) mod 5 = 0, hence a(1) = 5.
		

Crossrefs

A079777(n) = 0.

Programs

  • Java
    class A073853 { public static void main(String [] args) { BigInteger an = BigInteger.ZERO ; BigInteger an1 = BigInteger.ONE ; BigInteger n = new BigInteger("2") ; for( ; ; n = n.add(BigInteger.ONE) ) { BigInteger an2 = an.add(an1).mod(n) ; if ( an2.compareTo(BigInteger.ZERO) == 0 ) System.out.println(n) ; an = an1 ; an1 = an2 ; } } } // R. J. Mathar, Dec 06 2009
  • Mathematica
    a = 0; b = 1; lst = {0}; Do[c = Mod[a + b, n]; If[c == 0, AppendTo[lst, n]; Print@n]; a = b; b = c, {n, 2, 2^31}] (* Robert G. Wilson v *)

Extensions

Corrected and extended by John W. Layman, Jun 11 2003
a(23)-a(26) from Zak Seidov; a(27)-a(28) from John W. Layman; a(29)-a(34) from Charles R Greathouse IV, Dec 09 2009. (These new terms were added by N. J. A. Sloane, Dec 20 2009.)
a(35) from Luca Armstrong, Apr 07 2023