cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A073879 a(1) = 1, a(n) = smallest number not included earlier such that a(1)+...+a(n) is a palindrome.

Original entry on oeis.org

1, 2, 3, 5, 11, 22, 33, 24, 10, 20, 30, 41, 40, 50, 21, 60, 31, 70, 51, 81, 80, 61, 71, 91, 90, 112, 110, 220, 330, 231, 440, 550, 121, 660, 341, 770, 451, 671, 880, 561, 781, 891, 882, 100, 200, 300, 410, 400, 500, 210, 600, 310, 700, 510, 810, 800, 610, 710, 910
Offset: 1

Views

Author

Amarnath Murthy, Aug 16 2002

Keywords

Crossrefs

Cf. A073880.

Programs

  • Mathematica
    seq={1}; Do[s=Total[seq]; k=1; While[MemberQ[seq, k] || !PalindromeQ[s+k], k++]; AppendTo[seq, k], {i,1,50}]; seq (* Amiram Eldar, Dec 04 2018 *)
  • PARI
    ispal(n)={my(v=digits(n));for(i=1, #v\2, if(v[i]<>v[#v+1-i], return(0))); 1}
    seq(n)={my(v=vector(n), M=Map(), t=0); for(n=1, n, for(k=1, oo, if(!mapisdefined(M,k) && ispal(k+t), mapput(M,k,1); v[n]=k; t+=k; break))); v} \\ Andrew Howroyd, Dec 04 2018

Extensions

More terms from Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Jun 24 2003

A109872 Palindromes such that successive difference of terms is also a palindrome.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 22, 33, 44, 55, 66, 77, 88, 99, 101, 202, 303, 404, 505, 606, 707, 808, 909, 1111, 2112, 3113, 4114, 5115, 6116, 7117, 8118, 9119
Offset: 1

Views

Author

Amarnath Murthy, Jul 09 2005

Keywords

Comments

The final term is a(36) = 9119 - see A073880. - Scott R. Shannon, Oct 07 2024

Examples

			1111 follows 909 as 1111-909 = 202.
		

Crossrefs

Cf. A073880.

Extensions

a(29) onwards corrected by Scott R. Shannon, Oct 07 2024

A376856 a(1) = 1; for n > 1, a(n) is the smallest unused positive number such that a(n), |a(n) - a(n-1)| and a(1) + ... +a(n) are all palindromes.

Original entry on oeis.org

1, 2, 3, 5, 11, 22, 33, 44, 121, 222, 101, 202, 454, 1221, 2222, 1001, 2002, 4554, 12221, 22222, 10001, 20002, 45554, 122221, 222222, 100001, 200002, 455554, 1222221, 2222222, 1000001, 2000002, 4555554, 12222221, 22222222, 10000001, 20000002, 45555554, 122222221, 222222222, 100000001, 200000002, 455555554, 1222222221, 2222222222, 1000000001
Offset: 1

Views

Author

Scott R. Shannon, Oct 06 2024

Keywords

Comments

The sequence is infinite as from a(13) onward a repetitive pattern of five numbers appears, 45...54, 12...21, 22...22, 10...01, 20...02, all of which grow by one extra digit each iteration.

Examples

			a(9) = 121 as 121 is a palindrome, |121 - 44| = 77 is a palindrome, and 1 + 2 + 3 + 5 + 11 + 22 + 33 + 44 + 121 = 242 is a palindrome.
		

Crossrefs

Showing 1-3 of 3 results.