A073912 Smallest number m such that m and the product of digits of m are both divisible by 8n, or 0 if no such number exists.
8, 48, 168, 288, 0, 384, 728, 448, 1368, 0, 0, 384, 0, 784, 0, 2688, 0, 3168, 0, 0, 7896, 0, 0, 2688, 0, 0, 4968, 12768, 0, 0, 0, 4864, 0, 0, 0, 4896, 0, 0, 0, 0, 0, 8736, 0, 0, 0, 0, 0, 2688, 74872, 0, 0, 0, 0, 22896, 0, 14784, 0, 0, 0, 0, 0, 0, 33768, 14848, 0, 0, 0, 0, 0
Offset: 1
Programs
-
Maple
f := 8:for i from 1 to 400 do b := ifactors(f*i)[2]: if b[nops(b)][1]>9 or (f*i mod 10) =0 then a[i] := 0:else j := 0:while true do j := j+f*i:c := convert(j,base,10): d := product(c[k],k=1..nops(c)): if (d mod f*i)=0 and d>0 then a[i] := j:break:fi: od:fi:od:seq(a[k],k=1..400);
Formula
a(n) = A085124(8*n). - R. J. Mathar, Jun 21 2018
Extensions
More terms from Sascha Kurz, Aug 23 2002
Comments