A073996 Number of strings of length n over GF(4) with trace 0 and subtrace 1.
0, 1, 3, 12, 60, 256, 1008, 4032, 16320, 65536, 261888, 1047552, 4193280, 16777216, 67104768, 268419072, 1073725440, 4294967296, 17179803648, 68719214592, 274877644800, 1099511627776, 4398045462528, 17592181850112, 70368739983360, 281474976710656, 1125899890065408, 4503599560261632, 18014398442373120
Offset: 1
Examples
a(2;0,1)=1 since the one 4-ary string of trace 0, subtrace 1 and length 2 is { 11 }.
Links
Programs
-
Mathematica
CoefficientList[Series[x^2 (6x^2-3x+1)/((1-2x)(1-4x)(1+4x^2)), {x,0,30}], x] (* Harvey P. Dale, Apr 03 2011 *)
Formula
a(n; t, s) = a(n-1; t, s) + a(n-1; t-1, s-(t-1)) + a(n-1; t-2, s-2(t-2)) + a(n-1; t-3, s-3(t-3)) where t is the trace and s is the subtrace. Note that all operations involving operands t or s are carried out over GF(4).
G.f.: (6*q^2-3*q+1)*q^2/[(1-2q)(1-4q)(1+4q^2)]. - Lawrence Sze, Oct 24 2004
Extensions
More terms from Harvey P. Dale, Apr 03 2011
More terms from Max Alekseyev, Apr 16 2013
Comments