cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A054661 Number of monic irreducible polynomials over GF(4) with zero trace.

Original entry on oeis.org

1, 0, 5, 12, 51, 160, 585, 2016, 7280, 26112, 95325, 349180, 1290555, 4792320, 17895679, 67104768, 252645135, 954422560, 3616814565, 13743842916, 52357696365, 199911014400, 764877654105, 2932030307680, 11258999068416
Offset: 1

Views

Author

N. J. A. Sloane, Apr 18 2000

Keywords

Comments

Also number of Lyndon words of length n with trace 0 over GF(4).

Crossrefs

Formula

From Andrey Zabolotskiy, Dec 17 2020: (Start)
a(n) = A074031(n) + 3 * A074032(n).
a(n) = A074446(n) + 3 * A074447(n). (End)

Extensions

More terms from James Sellers, Apr 19 2000

A074450 Let x = RootOf(z^2 + z + 1) and y = 1+x. Number of 4-ary Lyndon words of length n over GF(4) with trace 1 and subtrace x.

Original entry on oeis.org

0, 0, 1, 4, 12, 40, 144, 512, 1813, 6528, 23808, 87380, 322560, 1198080, 4473647, 16777216, 63160320, 238605640, 904200192, 3435973836, 13089411609, 49977753600, 191219367936, 733007751680, 2814749599332, 10825959997440, 41699995927744, 160842843834660, 621186153185280
Offset: 1

Views

Author

Frank Ruskey and Nate Kube, Aug 23 2002

Keywords

Comments

Also the number of 4-ary Lyndon words of length n over GF(4) with trace 1 and subtrace y. Also the number of 4-ary Lyndon words of length n over GF(4) with trace x and subtrace 1. Also the number of 4-ary Lyndon words of length n over GF(4) with trace x and subtrace x. Also the number of 4-ary Lyndon words of length n over GF(4) with trace y and subtrace 1. Also the number of 4-ary Lyndon words of length n over GF(4) with trace y and subtrace y.
Is this a duplicate of A074032? - R. J. Mathar, Dec 15 2020

Crossrefs

Extensions

Terms a(16) and beyond from Andrey Zabolotskiy, Jul 21 2021

A074031 Number of degree-n irreducible polynomials over GF(4) with trace 0 and subtrace 0.

Original entry on oeis.org

1, 0, 2, 0, 15, 40, 153, 480, 1841, 6528, 23901, 87040, 322875, 1198080, 4474738, 16773120, 63164175, 238605640, 904213989, 3435921408, 13089461538, 49977753600, 191219550297, 733007052640, 2814750270420, 10825959997440, 41699998413248, 160842834247680
Offset: 1

Views

Author

Frank Ruskey and Nate Kube, Aug 26 2002

Keywords

Crossrefs

Programs

  • Mathematica
    k = 2; q = 2^k;
    v[t_] := If[t === 0, q - 1, -1];
    dd[a_, n_] := With[{m = Floor[(n + 1)/4]},
       q^(n - 2) + Switch[Mod[n, 4],
         2, 0,
         0, -v[a] q^((n - 2)/2) (-1)^(m k),
         _, v[a] q^((n - 3)/2) (-1)^(m k)
       ]];
    h[n_, 0, a_] := 1/n Sum[MoebiusMu[d] (dd[a, n/d] - Boole[EvenQ[n]] q^(n/(2d)-1)), {d, Select[Divisors[n], OddQ]}];
    Table[h[n, 0, 0], {n, 30}] (* this sequence *)
    Table[h[n, 0, 1], {n, 30}] (* A074032 *)
    (* Andrey Zabolotskiy, Dec 15 2020 *)

Extensions

More terms from Ruskey's website added by Joerg Arndt, Jan 16 2011
Terms a(17) and beyond from Andrey Zabolotskiy, Dec 15 2020

A074033 Number of degree-n irreducible polynomials over GF(4) with trace 1 and subtrace 0.

Original entry on oeis.org

1, 0, 1, 4, 15, 40, 144, 512, 1841, 6528, 23808, 87380, 322875, 1198080, 4473647, 16777216, 63164175, 238605640, 904200192, 3435973836, 13089461538, 49977753600, 191219367936, 733007751680, 2814750270420, 10825959997440, 41699995927744, 160842843834660
Offset: 1

Views

Author

Frank Ruskey and Nate Kube, Aug 26 2002

Keywords

Comments

Let a = RootOf( x^2+x+1 ) and b = 1+a. Same as number of degree-n irreducible polynomials over GF(4) with trace a and subtrace 0. Same as number of degree-n irreducible polynomials over GF(4) with trace b and subtrace 0.

Crossrefs

Programs

  • Mathematica
    q = 4;
    v[t_] := If[t === 0, q - 1, -1];
    ddp[a_, n_] := q^(n-2) + q^Quotient[n-2, 2] {v[a], -1, v[1-a], 0}[[Mod[n, 4, 1]]];
    h[n_, 1, a_] := 1/n Sum[MoebiusMu[d] ddp[Mod[a+(d-1)/2, 2], n/d], {d, Select[Divisors[n], OddQ]}];
    Table[h[n, 1, 0], {n, 30}] (* this sequence *)
    Table[h[n, 1, 1], {n, 30}] (* A074034 *)
    (* Andrey Zabolotskiy, Dec 17 2020 *)

Extensions

More terms from Ruskey's website added by Joerg Arndt, Jan 16 2011
Terms a(17) and beyond from Andrey Zabolotskiy, Dec 17 2020

A074034 Number of degree-n irreducible polynomials over GF(4) with trace 1 and subtrace 1.

Original entry on oeis.org

0, 0, 2, 4, 12, 40, 153, 512, 1813, 6528, 23901, 87380, 322560, 1198080, 4474738, 16777216, 63160320, 238605640, 904213989, 3435973836, 13089411609, 49977753600, 191219550297, 733007751680, 2814749599332, 10825959997440, 41699998413248, 160842843834660
Offset: 1

Views

Author

Frank Ruskey and Nate Kube, Aug 26 2002

Keywords

Comments

Let a = RootOf( x^2+x+1 ) and b = 1+a. Same as number of degree-n irreducible polynomials over GF(4) with trace a and subtrace b. Same as number of degree-n irreducible polynomials over GF(4) with trace b and subtrace a.

Crossrefs

Extensions

More terms from Ruskey's website added by Joerg Arndt, Jan 16 2011
Terms a(17) and beyond from Andrey Zabolotskiy, Dec 17 2020

A074035 Let a = RootOf( x^2+x+1 ) and b = 1+a. Number of degree-n irreducible polynomials over GF(4) with trace 1 and subtrace a.

Original entry on oeis.org

0, 1, 1, 4, 12, 45, 144, 512, 1813, 6579, 23808, 87380, 322560, 1198665, 4473647, 16777216, 63160320, 238612920, 904200192, 3435973836, 13089411609, 49977848925, 191219367936, 733007751680, 2814749599332, 10825961287995, 41699995927744, 160842843834660
Offset: 1

Views

Author

Frank Ruskey and Nate Kube, Aug 26 2002

Keywords

Comments

Same as number of degree-n irreducible polynomials over GF(4) with trace 1 and subtrace b. Same as number of degree-n irreducible polynomials over GF(4) with trace a and subtrace 1. Same as number of degree-n irreducible polynomials over GF(4) with trace a and subtrace a. Same as number of degree-n irreducible polynomials over GF(4) with trace b and subtrace 1. Same as number of degree-n irreducible polynomials over GF(4) with trace b and subtrace b.

Crossrefs

Programs

  • Mathematica
    q = 4;
    ddpx[n_] := q^(n-2) + q^Quotient[n-2, 2] {-1, 1, -1, 0}[[Mod[n, 4, 1]]];
    h1x[n_] :=  1/n Sum[MoebiusMu[d] ddpx[n/d], {d, Select[Divisors[n], OddQ]}];
    Table[h1x[n], {n, 30}]
    (* Andrey Zabolotskiy, Dec 17 2020 *)

Extensions

More terms from Ruskey's website added by Joerg Arndt, Jan 16 2011
Terms a(17) and beyond from Andrey Zabolotskiy, Dec 17 2020
Showing 1-6 of 6 results.