A074024 Duplicate of A054661.
1, 0, 5, 12, 51, 160, 585, 2016, 7280, 26112, 95325, 349180, 1290555, 4792320
Offset: 1
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
A027377 := proc(n) local d,s; if n = 0 then RETURN(1); else s := 0; for d in divisors(n) do s := s+mobius(d)*4^(n/d); od; RETURN(s/n); fi; end;
a[n_] := Sum[MoebiusMu[d]*4^(n/d), {d, Divisors[n]}] / n; a[0] = 1; Table[a[n], {n, 0, 23}](* Jean-François Alcover, Nov 29 2011 *) mx=40;f[x_,k_]:=1-Sum[MoebiusMu[i] Log[1-k*x^i]/i,{i,1,mx}];CoefficientList[Series[f[x,4],{x,0,mx}],x] (* Herbert Kociemba, Nov 25 2016 *)
a(n)=if(n,sumdiv(n,d,moebius(d)<<(2*n/d))/n,1) \\ Charles R Greathouse IV, Nov 29 2011
a(3; y)=5 since the five Lyndon words over GF(4) of trace y and length 3 are { 00y, 01x, 0x1, 11y, xxy }; the five Lyndon words over Z_4 of trace 1 (mod 4) and length 3 are { 001, 023, 032, 113, 122 }.
a(n) = sumdiv(n, d, (gcd(d, 5)==1)*(moebius(d)*5^(n/d)))/(5*n); \\ Seiichi Manyama, May 29 2024
a(3;0,0)=2 since the two 4-ary Lyndon words of trace 0, subtrace 0 and length 3 are { 123, 132 }.
a(4;0,1)=2 since the two 4-ary Lyndon words of trace 0, subtrace 1 and length 4 are { 0011, 11xx }, where x = RootOf( z^2+z+1 ).
Comments