A058819 a(0) = 1, a(1) = 4; for n >= 2 a(n) is the number of degree-n monic reducible polynomials over GF(4), i.e., a(n) = 4^n - A027377(n).
1, 4, 10, 44, 196, 820, 3426, 14044, 57376, 233024, 943822, 3813004, 15379476, 61946644, 249262666, 1002159108, 4026535936, 16169288644, 64901742816, 260410648684, 1044536098828, 4188615725644, 16792541414866, 67309233561244, 269746853382816, 1080863910568960, 4330384259668126
Offset: 0
Keywords
References
- M. Lothaire, Combinatorics on words, Cambridge mathematical library, 1983, p. 126 (definition of shuffle algebra).
Programs
-
Mathematica
a[n_] := 4^n - DivisorSum[n, MoebiusMu[n/#] * 4^# &] / n; a[0] = 1; a[1] = 4; Array[a, 27, 0] (* Amiram Eldar, Aug 13 2023 *)
-
PARI
a(n) = if (n<=1, 4^n, 4^n - sumdiv(n, d, moebius(d)*4^(n/d))/n); \\ Michel Marcus, Oct 30 2017
Extensions
Better description from Sharon Sela (sharonsela(AT)hotmail.com), Feb 19 2002
More terms from Michel Marcus, Oct 30 2017
Comments