1, 2, 0, 3, 2, 0, 4, 6, 6, 0, 5, 12, 24, 12, 0, 6, 20, 60, 72, 30, 0, 7, 30, 120, 240, 240, 54, 0, 8, 42, 210, 600, 1020, 696, 126, 0, 9, 56, 336, 1260, 3120, 4020, 2184, 240, 0, 10, 72, 504, 2352, 7770, 15480, 16380, 6480, 504, 0, 11, 90, 720, 4032, 16800, 46410, 78120, 65280, 19656, 990, 0
Offset: 1
T(2,3)=6, because there are 6 primitive words of length 2 over 3-letter alphabet {a,b,c}: ab, ac, ba, bc, ca, cb; note that the non-primitive words aa, bb and cc don't belong to the list; secondly note that the words in the list need not be Lyndon words, for example ba can be derived from ab by a cyclic rotation of the positions.
Table begins:
1, 2, 3, 4, 5, ...
0, 2, 6, 12, 20, ...
0, 6, 24, 60, 120, ...
0, 12, 72, 240, 600, ...
0, 30, 240, 1020, 3120, ...
A006011
a(n) = n^2*(n^2 - 1)/4.
Original entry on oeis.org
0, 0, 3, 18, 60, 150, 315, 588, 1008, 1620, 2475, 3630, 5148, 7098, 9555, 12600, 16320, 20808, 26163, 32490, 39900, 48510, 58443, 69828, 82800, 97500, 114075, 132678, 153468, 176610, 202275, 230640, 261888, 296208, 333795, 374850, 419580, 468198
Offset: 0
From _Bruno Berselli_, Aug 29 2014: (Start)
After the zeros, the sequence is provided by the row sums of the triangle:
3;
4, 14;
5, 16, 39;
6, 18, 42, 84;
7, 20, 45, 88, 155;
8, 22, 48, 92, 160, 258;
9, 24, 51, 96, 165, 264, 399;
10, 26, 54, 100, 170, 270, 406, 584;
11, 28, 57, 104, 175, 276, 413, 592, 819;
12, 30, 60, 108, 180, 282, 420, 600, 828, 1110; etc.,
where T(r,c) = c*(c^2+r+1), with r = row index, c = column index, r >= c > 0. (End)
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Vincenzo Librandi, Table of n, a(n) for n = 0..10000
- Miguel Azaola and Francisco Santos, The number of triangulations of the cyclic polytope C(n,n-4), Discrete Comput. Geom., Vol. 27 (2002), pp. 29-48 (see Prop. 4.2(a)).
- S. M. Losanitsch, Die Isomerie-Arten bei den Homologen der Paraffin-Reihe, Chem. Ber., Vol. 30 (1897), pp. 1917-1926.
- S. M. Losanitsch, Die Isomerie-Arten bei den Homologen der Paraffin-Reihe, Chem. Ber., Vol. 30 (1897), pp. 1917-1926. (Annotated scanned copy)
- Eric Weisstein's World of Mathematics, Triangular Graph.
- Eric Weisstein's World of Mathematics, Wiener Index.
- Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).
Cf.
A000217,
A000290,
A000537,
A001477,
A002415,
A008911,
A047928,
A059270,
A083374,
A126274,
A163932,
A228317
-
[n^2*(n^2-1)/4: n in [0..40]]; // Vincenzo Librandi, Sep 14 2011
-
A006011 := proc(n)
n^2*(n^2-1)/4 ;
end proc: # R. J. Mathar, Nov 29 2015
-
Table[n^2 (n^2 - 1)/4, {n, 0, 38}]
Binomial[Range[20]^2, 2]/2 (* Eric W. Weisstein, Sep 08 2017 *)
LinearRecurrence[{5, -10, 10, -5, 1}, {0, 3, 18, 60, 150}, 20] (* Eric W. Weisstein, Sep 08 2017 *)
CoefficientList[Series[-3 x (1 + x)/(-1 + x)^5, {x, 0, 20}], x] (* Eric W. Weisstein, Sep 08 2017 *)
Join[{0},Times@@@Partition[Accumulate[Range[0,40]],2,1]] (* Harvey P. Dale, Aug 08 2025 *)
-
a(n)=binomial(n^2,2)/2 \\ Charles R Greathouse IV, Jun 27 2013
A143325
Table T(n,k) by antidiagonals. T(n,k) is the number of length n primitive (=aperiodic or period n) k-ary words (n,k >= 1) which are earlier in lexicographic order than any other word derived by cyclic shifts of the alphabet.
Original entry on oeis.org
1, 1, 0, 1, 1, 0, 1, 2, 3, 0, 1, 3, 8, 6, 0, 1, 4, 15, 24, 15, 0, 1, 5, 24, 60, 80, 27, 0, 1, 6, 35, 120, 255, 232, 63, 0, 1, 7, 48, 210, 624, 1005, 728, 120, 0, 1, 8, 63, 336, 1295, 3096, 4095, 2160, 252, 0, 1, 9, 80, 504, 2400, 7735, 15624, 16320, 6552, 495, 0, 1, 10, 99
Offset: 1
T(4,2)=6, because 6 words of length 4 over 2-letter alphabet {a,b} are primitive and earlier than others derived by cyclic shifts of the alphabet: aaab, aaba, aabb, abaa, abba, abbb; note that aaaa and abab are not primitive and words beginning with b can be derived by shifts of the alphabet from words in the list; secondly note that the words in the list need not be Lyndon words, for example aaba can be derived from aaab by a cyclic rotation of the positions.
Table begins:
1, 1, 1, 1, 1, 1, 1, 1, ...
0, 1, 2, 3, 4, 5, 6, 7, ...
0, 3, 8, 15, 24, 35, 48, 63, ...
0, 6, 24, 60, 120, 210, 336, 504, ...
0, 15, 80, 255, 624, 1295, 2400, 4095, ...
0, 27, 232, 1005, 3096, 7735, 16752, 32697, ...
0, 63, 728, 4095, 15624, 46655, 117648, 262143, ...
0, 120, 2160, 16320, 78000, 279720, 823200, 2096640, ...
-
with(numtheory):
f1:= proc(n) option remember;
unapply(k^(n-1)-add(f1(d)(k), d=divisors(n)minus{n}), k)
end;
T:= (n,k)-> f1(n)(k);
seq(seq(T(n, 1+d-n), n=1..d), d=1..12);
-
t[n_, k_] := Sum[k^(d-1)*MoebiusMu[n/d], {d, Divisors[n]}]; Table[t[n-k+1, k], {n, 1, 12}, {k, n, 1, -1}] // Flatten (* Jean-François Alcover, Jan 21 2014, from first formula *)
A027377
Number of irreducible polynomials of degree n over GF(4); dimensions of free Lie algebras.
Original entry on oeis.org
1, 4, 6, 20, 60, 204, 670, 2340, 8160, 29120, 104754, 381300, 1397740, 5162220, 19172790, 71582716, 268431360, 1010580540, 3817733920, 14467258260, 54975528948, 209430785460, 799644629550, 3059510616420
Offset: 0
- E. R. Berlekamp, Algebraic Coding Theory, McGraw-Hill, NY, 1968, p. 84.
- M. Lothaire, Combinatorics on Words. Addison-Wesley, Reading, MA, 1983, p. 79.
- Seiichi Manyama, Table of n, a(n) for n = 0..1666 (terms 0..200 from T. D. Noe)
- E. N. Gilbert and J. Riordan, Symmetry types of periodic sequences, Illinois J. Math., 5 (1961), 657-665.
- G. Niklasch, Some number theoretical constants: 1000-digit values [Cached copy]
- A. Pakapongpun and T. Ward, Functorial Orbit counting, JIS 12 (2009) 09.2.4, example 3.
- Y. Puri and T. Ward, Arithmetic and growth of periodic orbits, J. Integer Seqs., Vol. 4 (2001), #01.2.1.
- G. Viennot, Algèbres de Lie Libres et Monoïdes Libres, Lecture Notes in Mathematics 691, Springer Verlag 1978.
- Index entries for sequences related to Lyndon words
-
A027377 := proc(n) local d,s; if n = 0 then RETURN(1); else s := 0; for d in divisors(n) do s := s+mobius(d)*4^(n/d); od; RETURN(s/n); fi; end;
-
a[n_] := Sum[MoebiusMu[d]*4^(n/d), {d, Divisors[n]}] / n; a[0] = 1; Table[a[n], {n, 0, 23}](* Jean-François Alcover, Nov 29 2011 *)
mx=40;f[x_,k_]:=1-Sum[MoebiusMu[i] Log[1-k*x^i]/i,{i,1,mx}];CoefficientList[Series[f[x,4],{x,0,mx}],x] (* Herbert Kociemba, Nov 25 2016 *)
-
a(n)=if(n,sumdiv(n,d,moebius(d)<<(2*n/d))/n,1) \\ Charles R Greathouse IV, Nov 29 2011
Showing 1-10 of 55 results.
Next
Comments