cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 55 results. Next

A294438 Erroneous version of A074650.

Original entry on oeis.org

1, 2, 0, 3, 1, 0, 4, 3, 2, 0, 5, 6, 8, 3, 0, 6, 10, 20, 18, 6, 0, 7, 15, 40, 60, 48, 9, 0, 8, 21, 30, 150, 204, 116, 18, 0, 9, 28, 27, 195, 476, 670, 312, 30, 0
Offset: 1

Views

Author

Keywords

Comments

Included in accordance with OEIS policy of including published but erroneous sequences to serve as pointers to the correct versions. (There are incorrect values in Table 1 in the Perrin-Reutenauer paper - Christophe Reutenauer, personal communication.)

A001037 Number of degree-n irreducible polynomials over GF(2); number of n-bead necklaces with beads of 2 colors when turning over is not allowed and with primitive period n; number of binary Lyndon words of length n.

Original entry on oeis.org

1, 2, 1, 2, 3, 6, 9, 18, 30, 56, 99, 186, 335, 630, 1161, 2182, 4080, 7710, 14532, 27594, 52377, 99858, 190557, 364722, 698870, 1342176, 2580795, 4971008, 9586395, 18512790, 35790267, 69273666, 134215680, 260300986, 505286415, 981706806, 1908866960, 3714566310, 7233615333, 14096302710, 27487764474
Offset: 0

Views

Author

Keywords

Comments

Also dimensions of free Lie algebras - see A059966, which is essentially the same sequence.
This sequence also represents the number N of cycles of length L in a digraph under x^2 seen modulo a Mersenne prime M_q=2^q-1. This number does not depend on q and L is any divisor of q-1. See Theorem 5 and Corollary 3 of the Shallit and Vasiga paper: N=sum(eulerphi(d)/order(d,2)) where d is a divisor of 2^(q-1)-1 such that order(d,2)=L. - Tony Reix, Nov 17 2005
Except for a(0) = 1, Bau-Sen Du's [1985/2007] Table 1, p. 6, has this sequence as the 7th (rightmost) column. Other columns of the table include (but are not identified as) A006206-A006208. - Jonathan Vos Post, Jun 18 2007
"Number of binary Lyndon words" means: number of binary strings inequivalent modulo rotation (cyclic permutation) of the digits and not having a period smaller than n. This provides a link to A103314, since these strings correspond to the inequivalent zero-sum subsets of U_m (m-th roots of unity) obtained by taking the union of U_n (n|m) with 0 or more U_d (n | d, d | m) multiplied by some power of exp(i 2Pi/n) to make them mutually disjoint. (But not all zero-sum subsets of U_m are of that form.) - M. F. Hasler, Jan 14 2007
Also the number of dynamical cycles of period n of a threshold Boolean automata network which is a quasi-minimal positive circuit of size a multiple of n and which is updated in parallel. - Mathilde Noual (mathilde.noual(AT)ens-lyon.fr), Feb 25 2009
Also, the number of periodic points with (minimal) period n in the iteration of the tent map f(x):=2min{x,1-x} on the unit interval. - Pietro Majer, Sep 22 2009
Number of distinct cycles of minimal period n in a shift dynamical system associated with a totally disconnected hyperbolic iterated function system (see Barnsley link). - Michel Marcus, Oct 06 2013
From Jean-Christophe Hervé, Oct 26 2014: (Start)
For n > 0, a(n) is also the number of orbits of size n of the transform associated to the Kolakoski sequence A000002 (and this is true for any map with 2^n periodic points of period n). The Kolakoski transform changes a sequence of 1's and 2's by the sequence of the lengths of its runs. The Kolakoski sequence is one of the two fixed points of this transform, the other being the same sequence without the initial term. A025142 and A025143 are the periodic points of the orbit of size 2. A027375(n) = n*a(n) gives the number of periodic points of minimal period n.
For n > 1, this sequence is equal to A059966 and to A060477, and for n = 1, a(1) = A059966(1)+1 = A060477(1)-1; this because the n-th term of all 3 sequences is equal to (1/n)*sum_{d|n} mu(n/d)*(2^d+e), with e = -1/0/1 for resp. A059966/this sequence/A060477, and sum_{d|n} mu(n/d) equals 1 for n = 1 and 0 for all n > 1. (End)
Warning: A000031 and A001037 are easily confused, since they have similar formulas.
From Petros Hadjicostas, Jul 14 2020: (Start)
Following Kam Cheong Au (2020), let d(w,N) be the dimension of the Q-span of weight w and level N of colored multiple zeta values (CMZV). Here Q are the rational numbers.
Deligne's bound says that d(w,N) <= D(w,N), where 1 + Sum_{w >= 1} D(w,N)*t^w = (1 - a*t + b*t^2)^(-1) when N >= 3, where a = phi(N)/2 + omega(N) and b = omega(N) - 1 (with omega(N) = A001221(N) being the number of distinct primes of N).
For N = 3, a = phi(3)/2 + omega(3) = 2/2 + 1 = 2 and b = omega(3) - 1 = 0. It follows that D(w, N=3) = A000079(w) = 2^w.
For some reason, Kam Cheong Au (2020) assumes Deligne's bound is tight, i.e., d(w,N) = D(w,N). He sets Sum_{w >= 1} c(w,N)*t^w = log(1 + Sum_{w >= 1} d(w,N)*t^w) = log(1 + Sum_{w >= 1} D(w,N)*t^w) = -log(1 - a*t + b*t^2) for N >= 3.
For N = 3, we get that c(w, N=3) = A000079(w)/w = 2^w/w.
He defines d*(w,N) = Sum_{k | w} (mu(k)/k)*c(w/k,N) to be the "number of primitive constants of weight w and level N". (Using the terminology of A113788, we may perhaps call d*(w,N) the number of irreducible colored multiple zeta values at weight w and level N.)
Using standard techniques of the theory of g.f.'s, we can prove that Sum_{w >= 1} d*(w,N)*t^w = Sum_{s >= 1} (mu(s)/s) Sum_{k >= 1} c(k,N)*(t^s)^k = -Sum_{s >= 1} (mu(s)/s)*log(1 - a*t^s + b*t^(2*s)).
For N = 3, we saw that a = 2 and b = 0, and hence d*(w, N=3) = a(w) = Sum_{k | w} (mu(k)/k) * 2^(w/k) / (w/k) = (1/w) * Sum_{k | w} mu(k) * 2^(w/k) for w >= 1. See Table 1 on p. 6 in Kam Cheong Au (2020). (End)

Examples

			Binary strings (Lyndon words, cf. A102659):
a(0) = 1 = #{ "" },
a(1) = 2 = #{ "0", "1" },
a(2) = 1 = #{ "01" },
a(3) = 2 = #{ "001", "011" },
a(4) = 3 = #{ "0001", "0011", "0111" },
a(5) = 6 = #{ "00001", "00011", "00101", "00111", "01011", "01111" }.
		

References

  • Michael F. Barnsley, Fractals Everywhere, Academic Press, San Diego, 1988, page 171, Lemma 3.
  • E. R. Berlekamp, Algebraic Coding Theory, McGraw-Hill, NY, 1968, p. 84.
  • E. L. Blanton, Jr., S. P. Hurd and J. S. McCranie. On the digraph defined by squaring mod m, when m has primitive roots. Congr. Numer. 82 (1991), 167-177.
  • P. J. Freyd and A. Scedrov, Categories, Allegories, North-Holland, Amsterdam, 1990. See 1.925.
  • M. Lothaire, Combinatorics on Words, Addison-Wesley, Reading, MA, 1983, pp. 65, 79.
  • Robert M. May, "Simple mathematical models with very complicated dynamics." Nature, Vol. 261, June 10, 1976, pp. 459-467; reprinted in The Theory of Chaotic Attractors, pp. 85-93. Springer, New York, NY, 2004. The sequences listed in Table 2 are A000079, A027375, A000031, A001037, A000048, A051841. - N. J. A. Sloane, Mar 17 2019
  • Guy Melançon, Factorizing infinite words using Maple, MapleTech Journal, vol. 4, no. 1, 1997, pp. 34-42, esp. p. 36.
  • M. R. Nester, (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence in entries N0046 and N0287).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Column 2 of A074650.
Row sums of A051168, which gives the number of Lyndon words with fixed number of zeros and ones.
Euler transform is A000079.
See A058943 and A102569 for initial terms. See also A058947, A011260, A059966.
Irreducible over GF(2), GF(3), GF(4), GF(5), GF(7): A058943, A058944, A058948, A058945, A058946. Primitive irreducible over GF(2), GF(3), GF(4), GF(5), GF(7): A058947, A058949, A058952, A058950, A058951.
Cf. A000031 (n-bead necklaces but may have period dividing n), A014580, A046211, A046209, A006206-A006208, A038063, A060477, A103314.
See also A102659 for the list of binary Lyndon words themselves.

Programs

  • Haskell
    a001037 0 = 1
    a001037 n = (sum $ map (\d -> (a000079 d) * a008683 (n `div` d)) $
                           a027750_row n) `div` n
    -- Reinhard Zumkeller, Feb 01 2013
    
  • Maple
    with(numtheory): A001037 := proc(n) local a,d; if n = 0 then RETURN(1); else a := 0: for d in divisors(n) do a := a+mobius(n/d)*2^d; od: RETURN(a/n); fi; end;
  • Mathematica
    f[n_] := Block[{d = Divisors@ n}, Plus @@ (MoebiusMu[n/d]*2^d/n)]; Array[f, 32]
  • PARI
    A001037(n)=if(n>1,sumdiv(n,d,moebius(d)*2^(n/d))/n,n+1) \\ Edited by M. F. Hasler, Jan 11 2016
    
  • PARI
    {a(n)=polcoeff(1-sum(k=1,n,moebius(k)/k*log(1-2*x^k+x*O(x^n))),n)} \\ Paul D. Hanna, Oct 13 2010
    
  • PARI
    a(n)=if(n>1,my(s);forstep(i=2^n+1,2^(n+1),2,s+=polisirreducible(Mod(1,2) * Pol(binary(i))));s,n+1) \\ Charles R Greathouse IV, Jan 26 2012
    
  • Python
    from sympy import divisors, mobius
    def a(n): return sum(mobius(d) * 2**(n//d) for d in divisors(n))/n if n>1 else n + 1 # Indranil Ghosh, Apr 26 2017

Formula

For n >= 1:
a(n) = (1/n)*Sum_{d | n} mu(n/d)*2^d.
A000031(n) = Sum_{d | n} a(d).
2^n = Sum_{d | n} d*a(d).
a(n) = A027375(n)/n.
a(n) = A000048(n) + A051841(n).
For n > 1, a(n) = A059966(n) = A060477(n).
G.f.: 1 - Sum_{n >= 1} moebius(n)*log(1 - 2*x^n)/n, where moebius(n) = A008683(n). - Paul D. Hanna, Oct 13 2010
From Richard L. Ollerton, May 10 2021: (Start)
For n >= 1:
a(n) = (1/n)*Sum_{k=1..n} mu(gcd(n,k))*2^(n/gcd(n,k))/phi(n/gcd(n,k)).
a(n) = (1/n)*Sum_{k=1..n} mu(n/gcd(n,k))*2^gcd(n,k)/phi(n/gcd(n,k)). (End)
a(n) ~ 2^n / n. - Vaclav Kotesovec, Aug 11 2021

Extensions

Revised by N. J. A. Sloane, Jun 10 2012

A007290 a(n) = 2*binomial(n,3).

Original entry on oeis.org

0, 0, 0, 2, 8, 20, 40, 70, 112, 168, 240, 330, 440, 572, 728, 910, 1120, 1360, 1632, 1938, 2280, 2660, 3080, 3542, 4048, 4600, 5200, 5850, 6552, 7308, 8120, 8990, 9920, 10912, 11968, 13090, 14280, 15540, 16872, 18278, 19760, 21320, 22960, 24682, 26488, 28380, 30360, 32430, 34592, 36848, 39200
Offset: 0

Views

Author

Keywords

Comments

Number of acute triangles made from the vertices of a regular n-polygon when n is even (cf. A000330). - Sen-Peng Eu, Apr 05 2001
a(n+2) is (-1)*coefficient of X in Zagier's polynomial (n,n-1). - Benoit Cloitre, Oct 12 2002
Definite integrals of certain products of 2 derivatives of (orthogonal) Chebyshev polynomials of the 2nd kind are pi-multiple of this sequence. For even (p+q): Integrate[ D[ChebyshevU[p, x], x] D[ChebyshevU[q, x], x] (1 - x^2)^(1/2), {x,-1,1}] / Pi = a(n), where n=Min[p,q]. Example: a(3)=20 because Integrate[ D[ChebyshevU[3, x], x] D[ChebyshevU[5, x], x] (1 - x^2)^(1/2), {x,-1,1}]/Pi = 20 since 3=Min[3,5] and 3+5 is even. - Christoph Pacher (Christoph.Pacher(AT)arcs.ac.at), Dec 16 2004
If Y is a 2-subset of an n-set X then, for n>=3, a(n-1) is the number of 3-subsets and 4-subsets of X having exactly one element in common with Y. - Milan Janjic, Dec 28 2007
a(n) is also the number of proper colorings of the cycle graph Csub3 (also the complete graph Ksub3) when n colors are available. - Gary E. Stevens, Dec 28 2008
a(n) is the reverse Wiener index of the path graph with n vertices. See the Balaban et al. reference, p. 927.
For n > 1: a(n) = sum of (n-1)-th row of A141418. - Reinhard Zumkeller, Nov 18 2012
This is the sequence for nuclear magic numbers in an idealized spherical nucleus under the harmonic oscillator model. - Jess Tauber, May 20 2013
Shifted non-vanishing diagonal of A132440^3/3. Second subdiagonal of A238363 (without zeros). For n>0, a(n+2)=n*(n+1)*(n+2)/3. Cf. A130534 for relations to colored forests and disposition of flags on flagpoles. - Tom Copeland, Apr 05 2014
a(n) is the number of ordered rooted trees with n non-root nodes that have 2 leaves; see A108838. - Joerg Arndt, Aug 18 2014
Number of floating point multiplications in the factorization of an (n-1)X(n-1) real matrix by Gaussian elimination as e.g. implemented in LINPACK subroutines sgefa.f or dgefa.f. The number of additions is given by A000330. - Hugo Pfoertner, Mar 28 2018
a(n+1) = Max_{s in S_n} Sum_{k=1..n} (k - s(k))^2 where S_n is the symmetric group of permutations of [1..n]; this maximum is obtained with the permutation s = (1, n) (2, n-1) (3, n-2) ... (k, n-k+1). (see Protat reference). - Bernard Schott, Dec 26 2022

References

  • Luigi Berzolari, Allgemeine Theorie der Höheren Ebenen Algebraischen Kurven, Encyclopädie der Mathematischen Wissenschaften mit Einschluss ihrer Anwendungen. Band III_2. Heft 3, Leipzig: B. G. Teubner, 1906, p. 352.
  • Louis Comtet, Advanced Combinatorics, Reidel, 1974, p. 259.
  • Maurice Protat, Des Olympiades à l'Agrégation, un problème de maximum, Problème 36, p. 83, Ellipses, Paris 1997.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

A diagonal of A059419. Partial sums of A002378.
A diagonal of A008291. Row 3 of A074650.

Programs

  • Haskell
    a007290 n = if n < 3 then 0 else 2 * a007318 n 3  -- Reinhard Zumkeller, Nov 18 2012
    
  • Magma
    I:=[0, 0, 0, 2]; [n le 4 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4): n in [1..45]]; // Vincenzo Librandi, Jun 19 2012
    
  • Maple
    A007290 := proc(n) 2*binomial(n,3) end proc:
  • Mathematica
    Table[Integrate[ D[ChebyshevU[n, x], x] D[ChebyshevU[n, x], x] (1 - x^2)^(1/2), {x, -1, 1}]/Pi, {n, 1, 20}] (* Pacher *)
    LinearRecurrence[{4,-6,4,-1},{0,0,0,2},50] (* Vincenzo Librandi, Jun 19 2012 *)
  • PARI
    my(x='x+O('x^100)); concat([0, 0, 0], Vec(2*x^3/(1-x)^4)) \\ Altug Alkan, Nov 01 2015
    
  • PARI
    apply( {A007290(n)=binomial(n,3)*2}, [0..55]) \\ M. F. Hasler, Jul 02 2021

Formula

G.f.: 2*x^3/(1-x)^4.
a(n) = a(n-1)*n/(n-3) = a(n-1) + A002378(n-2) = 2*A000292(n-2) = Sum_{i=0..n-2} i*(i+1) = n*(n-1)*(n-2)/3. - Henry Bottomley, Jun 02 2000 [Formula corrected by R. J. Mathar, Dec 13 2010]
a(n) = A000217(n-2) + A000330(n-2), n>1. - Reinhard Zumkeller, Mar 20 2008
a(n+1) = A000330(n) - A000217(n), n>=0. - Zak Seidov, Aug 07 2010
a(n) = A033487(n-2) - A052149(n-1) for n>1. - Bruno Berselli, Dec 10 2010
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). - Vincenzo Librandi, Jun 19 2012
a(n) = (2*n - 3*n^2 + n^3)/3. - T. D. Noe, May 20 2013
a(n+1) = A002412(n) - A000330(n) or "Hex Pyramidal" - "Square Pyramidal" (as can also be seen via above formula). - Richard R. Forberg, Aug 07 2013
Sum_{n>=3} 1/a(n) = 3/4. - Enrique Pérez Herrero, Nov 10 2013
E.g.f.: exp(x)*x^3/3. - Geoffrey Critzer, Nov 22 2015
a(n+2) = delta(-n) = -delta(n) for n >= 0, where delta is the p-derivation over the integers with respect to prime p = 3. - Danny Rorabaugh, Nov 10 2017
(a(n) + a(n+1))/2 = A000330(n-1). - Ezhilarasu Velayutham, Apr 05 2019
Sum_{n>=3} (-1)^(n+1)/a(n) = 6*log(2) - 15/4. - Amiram Eldar, Jan 09 2022
a(n) = Sum_{m=0..n-2} Sum_{k=0..n-2} abs(m-k). - Nicolas Bělohoubek, Nov 06 2022
From Bernard Schott, Jan 04 2023: (Start)
a(n) = 2 * A000292(n-2), for n >= 2.
a(n+1) = 2 *Sum_{k=1..floor(n/2)} (n-(2k-1))^2, for n >= 2. (End)

A001692 Number of irreducible polynomials of degree n over GF(5); dimensions of free Lie algebras.

Original entry on oeis.org

1, 5, 10, 40, 150, 624, 2580, 11160, 48750, 217000, 976248, 4438920, 20343700, 93900240, 435959820, 2034504992, 9536718750, 44878791360, 211927516500, 1003867701480, 4768371093720, 22706531339280
Offset: 0

Views

Author

Keywords

Comments

Exponents in expansion of Hardy-Littlewood constant C_5 = 0.409874885.. = A269843 as a product_{n>=2} zeta(n)^(-a(n)).
Number of aperiodic necklaces with n beads of 5 colors. - Herbert Kociemba, Nov 25 2016

References

  • E. R. Berlekamp, Algebraic Coding Theory, McGraw-Hill, NY, 1968, p. 84.
  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003
  • M. Lothaire, Combinatorics on Words. Addison-Wesley, Reading, MA, 1983, p. 79.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

5th column of A074650. - Alois P. Heinz, Aug 08 2008

Programs

  • Haskell
    a001692 n = flip div n $ sum $
                zipWith (*) (map a008683 divs) (map a000351 $ reverse divs)
                where divs = a027750_row n
    -- Reinhard Zumkeller, Oct 07 2015
  • Mathematica
    a[0] = 1; a[n_] := Sum[MoebiusMu[d]*5^(n/d)/n, {d, Divisors[n]}]; Table[a[n], {n, 0, 21}] (* Jean-François Alcover, Mar 11 2014 *)
    mx=40;f[x_,k_]:=1-Sum[MoebiusMu[i] Log[1-k*x^i]/i,{i,1,mx}];CoefficientList[Series[f[x,5],{x,0,mx}],x] (* Herbert Kociemba, Nov 25 2016 *)
  • PARI
    a(n)=if(n,sumdiv(n,d,moebius(d)*5^(n/d))/n,1) \\ Charles R Greathouse IV, Jun 15 2011
    

Formula

a(n) = Sum_{d|n} mu(d)*5^(n/d)/n, for n>0.
G.f.: k=5, 1 - Sum_{i>=1} mu(i)*log(1 - k*x^i)/i. - Herbert Kociemba, Nov 25 2016

A102659 List of Lyndon words on {1,2} sorted first by length and then lexicographically.

Original entry on oeis.org

1, 2, 12, 112, 122, 1112, 1122, 1222, 11112, 11122, 11212, 11222, 12122, 12222, 111112, 111122, 111212, 111222, 112122, 112212, 112222, 121222, 122222, 1111112, 1111122, 1111212, 1111222, 1112112, 1112122, 1112212, 1112222, 1121122
Offset: 1

Views

Author

N. J. A. Sloane, Feb 03 2005

Keywords

Comments

A Lyndon word is primitive (not a power of another word) and is earlier in lexicographic order than any of its cyclic shifts.

Crossrefs

The "co" version is A329318.
A triangular version is A296657.
A sequence listing all Lyndon compositions is A294859.
Numbers whose binary expansion is Lyndon are A328596.
Length of the Lyndon factorization of the binary expansion is A211100.

Programs

  • Haskell
    cf. link.
    
  • Mathematica
    lynQ[q_]:=Array[Union[{q,RotateRight[q,#]}]=={q,RotateRight[q,#]}&,Length[q]-1,1,And];
    Join@@Table[FromDigits/@Select[Tuples[{1,2},n],lynQ],{n,5}] (* Gus Wiseman, Nov 14 2019 *)
  • PARI
    is_A102659(n)={ vecsort(d=digits(n))!=d&&for(i=1,#d-1, n>[1,10^(#d-i)]*divrem(n,10^i)&&return); fordiv(#d,L,L<#d && d==concat(Col(vector(#d/L,i,1)~*vecextract(d,2^L-1))~)&&return); !setminus(Set(d),[1,2])} \\ The last check is the least expensive one, but not useful if we test only numbers with digits {1,2}.
    for(n=1,6,p=vector(n,i,10^(n-i))~;forvec(d=vector(n,i,[1,2]),is_A102659(m=d*p)&&print1(m","))) \\ One could use is_A102660 instead of is_A102659 here. - M. F. Hasler, Mar 08 2014

Formula

A102659 = A102660 intersect A007931 = A213969 intersect A239016. - M. F. Hasler, Mar 10 2014

Extensions

More terms from Franklin T. Adams-Watters, Dec 14 2006
Definition improved by Reinhard Zumkeller, Mar 23 2012

A027376 Number of ternary irreducible monic polynomials of degree n; dimensions of free Lie algebras.

Original entry on oeis.org

1, 3, 3, 8, 18, 48, 116, 312, 810, 2184, 5880, 16104, 44220, 122640, 341484, 956576, 2690010, 7596480, 21522228, 61171656, 174336264, 498111952, 1426403748, 4093181688, 11767874940, 33891544368, 97764009000, 282429535752, 817028131140, 2366564736720, 6863037256208, 19924948267224, 57906879556410
Offset: 0

Views

Author

Keywords

Comments

Number of Lyndon words of length n on {1,2,3}. A Lyndon word is primitive (not a power of another word) and is earlier in lexicographic order than any of its cyclic shifts. - John W. Layman, Jan 24 2006
Exponents in an expansion of the Hardy-Littlewood constant Product(1 - (3*p - 1)/(p - 1)^3, p prime >= 5), whose decimal expansion is in A065418: the constant equals Product_{n >= 2} (zeta(n)*(1 - 2^(-n))*(1 - 3^(-n)))^(-a(n)). - Michael Somos, Apr 05 2003
Number of aperiodic necklaces with n beads of 3 colors. - Herbert Kociemba, Nov 25 2016
Number of irreducible harmonic polylogarithms, see page 299 of Gehrmann and Remiddi reference and table 1 of Maître article. - F. Chapoton, Aug 09 2021
For n>=2, a(n) is the number of Hesse loops of length 2*n, see Theorem 22 of Dutta, Halbeisen, Hungerbühler link. - Sayan Dutta, Sep 22 2023
For n>=2, a(n) is the number of orbits of size n of isomorphism classes of elliptic curves under the Hesse derivative, see Theorem 2 of Kettinger link. - Jake Kettinger, Aug 07 2024

Examples

			For n = 2 the a(2)=3 polynomials are  x^2+1, x^2+x+2, x^2+2*x+2. - _Robert Israel_, Dec 16 2015
		

References

  • E. R. Berlekamp, Algebraic Coding Theory, McGraw-Hill, NY, 1968, p. 84.
  • M. Lothaire, Combinatorics on Words. Addison-Wesley, Reading, MA, 1983, p. 79.

Crossrefs

Programs

  • Maple
    with(numtheory): A027376 := n -> `if`(n = 0, 1,
    add(mobius(d)*3^(n/d), d = divisors(n))/n):
    seq(A027376(n), n = 0..32);
  • Mathematica
    a[0]=1; a[n_] := Module[{ds=Divisors[n], i}, Sum[MoebiusMu[ds[[i]]]3^(n/ds[[i]]), {i, 1, Length[ds]}]/n]
    a[0]=1; a[n_] := DivisorSum[n, MoebiusMu[n/#]*3^#&]/n; Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Dec 01 2015 *)
    mx=40;f[x_,k_]:=1-Sum[MoebiusMu[i] Log[1-k*x^i]/i,{i,1,mx}];CoefficientList[Series[f[x,3],{x,0,mx}],x] (* Herbert Kociemba, Nov 25 2016 *)
  • PARI
    a(n)=if(n<1,n==0,sumdiv(n,d,moebius(n/d)*3^d)/n)

Formula

a(n) = (1/n)*Sum_{d|n} mu(d)*3^(n/d).
(1 - 3*x) = Product_{n>0} (1 - x^n)^a(n).
G.f.: k = 3, 1 - Sum_{i >= 1} mu(i)*log(1 - k*x^i)/i. - Herbert Kociemba, Nov 25 2016
a(n) ~ 3^n / n. - Vaclav Kotesovec, Jul 01 2018
a(n) = 2*A046211(n) + A046209(n). - R. J. Mathar, Oct 21 2021

A143324 Table T(n,k) by antidiagonals. T(n,k) is the number of length n primitive (=aperiodic or period n) k-ary words (n,k >= 1).

Original entry on oeis.org

1, 2, 0, 3, 2, 0, 4, 6, 6, 0, 5, 12, 24, 12, 0, 6, 20, 60, 72, 30, 0, 7, 30, 120, 240, 240, 54, 0, 8, 42, 210, 600, 1020, 696, 126, 0, 9, 56, 336, 1260, 3120, 4020, 2184, 240, 0, 10, 72, 504, 2352, 7770, 15480, 16380, 6480, 504, 0, 11, 90, 720, 4032, 16800, 46410, 78120, 65280, 19656, 990, 0
Offset: 1

Views

Author

Alois P. Heinz, Aug 07 2008

Keywords

Comments

Column k is Dirichlet convolution of mu(n) with k^n.
The coefficients of the polynomial of row n are given by the n-th row of triangle A054525; for example row 4 has polynomial -k^2+k^4.

Examples

			T(2,3)=6, because there are 6 primitive words of length 2 over 3-letter alphabet {a,b,c}: ab, ac, ba, bc, ca, cb; note that the non-primitive words aa, bb and cc don't belong to the list; secondly note that the words in the list need not be Lyndon words, for example ba can be derived from ab by a cyclic rotation of the positions.
Table begins:
  1,  2,   3,    4,    5, ...
  0,  2,   6,   12,   20, ...
  0,  6,  24,   60,  120, ...
  0, 12,  72,  240,  600, ...
  0, 30, 240, 1020, 3120, ...
		

Crossrefs

Rows n=1-10 give: A000027, A002378(k-1), A007531(k+1), A047928(k+1), A061167, A218130, A133499, A218131, A218132, A218133.
Main diagonal gives A252764.

Programs

  • Maple
    with(numtheory): f0:= proc(n) option remember; unapply(k^n-add(f0(d)(k), d=divisors(n)minus{n}), k) end; T:= (n,k)-> f0(n)(k); seq(seq(T(n, 1+d-n), n=1..d), d=1..12);
  • Mathematica
    f0[n_] := f0[n] = Function [k, k^n - Sum[f0[d][k], {d, Complement[Divisors[n], {n}]}]]; t[n_, k_] := f0[n][k]; Table[Table[t[n, 1 + d - n], {n, 1, d}], {d, 1, 12}] // Flatten (* Jean-François Alcover, Dec 12 2013, translated from Maple *)

Formula

T(n,k) = Sum_{d|n} k^d * mu(n/d).
T(n,k) = k^n - Sum_{d
T(n,k) = A143325(n,k) * k.
T(n,k) = A074650(n,k) * n.
So Sum_{d|n} k^d * mu(n/d) == 0 (mod n), this is a generalization of Fermat's little theorem k^p - k == 0 (mod p) for primes p to an arbitrary modulus n (see the Smyth link). - Franz Vrabec, Feb 09 2021

A006011 a(n) = n^2*(n^2 - 1)/4.

Original entry on oeis.org

0, 0, 3, 18, 60, 150, 315, 588, 1008, 1620, 2475, 3630, 5148, 7098, 9555, 12600, 16320, 20808, 26163, 32490, 39900, 48510, 58443, 69828, 82800, 97500, 114075, 132678, 153468, 176610, 202275, 230640, 261888, 296208, 333795, 374850, 419580, 468198
Offset: 0

Keywords

Comments

Products of two consecutive triangular numbers (A000217).
a(n) is the number of Lyndon words of length 4 on an n-letter alphabet. A Lyndon word is a primitive word that is lexicographically earliest in its cyclic rotation class. For example, a(2)=3 counts 1112, 1122, 1222. - David Callan, Nov 29 2007
For n >= 2 this is the second rightmost column of A163932. - Johannes W. Meijer, Oct 16 2009
Partial sums of A059270. - J. M. Bergot, Jun 27 2013
Using the integers, triangular numbers, and squares plot the points (A001477(n),A001477(n+1)), (A000217(n), A000217(n+1)), and (A000290(n),A000290(n+1)) to create the vertices of a triangle. One-half the area of this triangle = a(n). - J. M. Bergot, Aug 01 2013
a(n) is the Wiener index of the triangular graph T(n+1). - Emeric Deutsch, Aug 26 2013

Examples

			From _Bruno Berselli_, Aug 29 2014: (Start)
After the zeros, the sequence is provided by the row sums of the triangle:
   3;
   4, 14;
   5, 16, 39;
   6, 18, 42,  84;
   7, 20, 45,  88, 155;
   8, 22, 48,  92, 160, 258;
   9, 24, 51,  96, 165, 264, 399;
  10, 26, 54, 100, 170, 270, 406, 584;
  11, 28, 57, 104, 175, 276, 413, 592, 819;
  12, 30, 60, 108, 180, 282, 420, 600, 828, 1110; etc.,
where T(r,c) = c*(c^2+r+1), with r = row index, c = column index, r >= c > 0. (End)
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Magma
    [n^2*(n^2-1)/4: n in [0..40]]; // Vincenzo Librandi, Sep 14 2011
    
  • Maple
    A006011 := proc(n)
        n^2*(n^2-1)/4 ;
    end proc: # R. J. Mathar, Nov 29 2015
  • Mathematica
    Table[n^2 (n^2 - 1)/4, {n, 0, 38}]
    Binomial[Range[20]^2, 2]/2 (* Eric W. Weisstein, Sep 08 2017 *)
    LinearRecurrence[{5, -10, 10, -5, 1}, {0, 3, 18, 60, 150}, 20] (* Eric W. Weisstein, Sep 08 2017 *)
    CoefficientList[Series[-3 x (1 + x)/(-1 + x)^5, {x, 0, 20}], x] (* Eric W. Weisstein, Sep 08 2017 *)
    Join[{0},Times@@@Partition[Accumulate[Range[0,40]],2,1]] (* Harvey P. Dale, Aug 08 2025 *)
  • PARI
    a(n)=binomial(n^2,2)/2 \\ Charles R Greathouse IV, Jun 27 2013

Formula

G.f.: 3*(1 + x) / (1 - x)^5.
a(n) = (n-1)*n/2 * n*(n+1)/2 = A000217(n-1)*A000217(n) = 1/2*(n^2-1)*n^2/2 = 1/2*A000217(n^2-1). - Alexander Adamchuk, Apr 13 2006
a(n) = 3*A002415(n) = A047928(n-1)/4 = A083374(n-1)/2 = A008911(n)*3/2. - Zerinvary Lajos, May 09 2007
a(n) = (A126274(n) - A000537(n+1))/2. - Enrique Pérez Herrero, Mar 11 2013
Ceiling(sqrt(a(n)) + sqrt(a(n-1)))/2 = A000217(n). - Richard R. Forberg, Aug 14 2013
a(n) = Sum_{i=1..n-1} i*(i^2+n) for n > 1 (see Example section). - Bruno Berselli, Aug 29 2014
Sum_{n>=2} 1/a(n) = 7 - 2*Pi^2/3 = 0.42026373260709425411... . - Vaclav Kotesovec, Apr 27 2016
a(n) = A000217(n^2+n) - A000217(n)*A000217(n+1). - Charlie Marion, Feb 15 2020
Sum_{n>=2} (-1)^n/a(n) = Pi^2/3 - 3. - Amiram Eldar, Nov 02 2021
E.g.f.: exp(x)*x^2*(6 + 6*x + x^2)/4. - Stefano Spezia, Mar 12 2024

A143325 Table T(n,k) by antidiagonals. T(n,k) is the number of length n primitive (=aperiodic or period n) k-ary words (n,k >= 1) which are earlier in lexicographic order than any other word derived by cyclic shifts of the alphabet.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 3, 0, 1, 3, 8, 6, 0, 1, 4, 15, 24, 15, 0, 1, 5, 24, 60, 80, 27, 0, 1, 6, 35, 120, 255, 232, 63, 0, 1, 7, 48, 210, 624, 1005, 728, 120, 0, 1, 8, 63, 336, 1295, 3096, 4095, 2160, 252, 0, 1, 9, 80, 504, 2400, 7735, 15624, 16320, 6552, 495, 0, 1, 10, 99
Offset: 1

Author

Alois P. Heinz, Aug 07 2008

Keywords

Comments

Column k is Dirichlet convolution of mu(n) with k^(n-1). The coefficients of the polynomial of row n are given by the n-th row of triangle A054525; for example row 4 has polynomial -k+k^3.

Examples

			T(4,2)=6, because 6 words of length 4 over 2-letter alphabet {a,b} are primitive and earlier than others derived by cyclic shifts of the alphabet: aaab, aaba, aabb, abaa, abba, abbb; note that aaaa and abab are not primitive and words beginning with b can be derived by shifts of the alphabet from words in the list; secondly note that the words in the list need not be Lyndon words, for example aaba can be derived from aaab by a cyclic rotation of the positions.
Table begins:
  1,   1,    1,     1,     1,      1,      1,       1, ...
  0,   1,    2,     3,     4,      5,      6,       7, ...
  0,   3,    8,    15,    24,     35,     48,      63, ...
  0,   6,   24,    60,   120,    210,    336,     504, ...
  0,  15,   80,   255,   624,   1295,   2400,    4095, ...
  0,  27,  232,  1005,  3096,   7735,  16752,   32697, ...
  0,  63,  728,  4095, 15624,  46655, 117648,  262143, ...
  0, 120, 2160, 16320, 78000, 279720, 823200, 2096640, ...
		

Crossrefs

Rows n=1-5, 7 give: A000012, A001477, A005563, A007531, A123865, A123866.
Main diagonal gives A075147.

Programs

  • Maple
    with(numtheory):
    f1:= proc(n) option remember;
           unapply(k^(n-1)-add(f1(d)(k), d=divisors(n)minus{n}), k)
         end;
    T:= (n,k)-> f1(n)(k);
    seq(seq(T(n, 1+d-n), n=1..d), d=1..12);
  • Mathematica
    t[n_, k_] := Sum[k^(d-1)*MoebiusMu[n/d], {d, Divisors[n]}]; Table[t[n-k+1, k], {n, 1, 12}, {k, n, 1, -1}] // Flatten (* Jean-François Alcover, Jan 21 2014, from first formula *)

Formula

T(n,k) = Sum_{d|n} k^(d-1) * mu(n/d).
T(n,k) = k^(n-1) - Sum_{d
T(n,k) = A074650(n,k) * n/k.
T(n,k) = A143324(n,k) / k.

A027377 Number of irreducible polynomials of degree n over GF(4); dimensions of free Lie algebras.

Original entry on oeis.org

1, 4, 6, 20, 60, 204, 670, 2340, 8160, 29120, 104754, 381300, 1397740, 5162220, 19172790, 71582716, 268431360, 1010580540, 3817733920, 14467258260, 54975528948, 209430785460, 799644629550, 3059510616420
Offset: 0

Keywords

Comments

Apart from initial terms, exponents in expansion of A065419 as a product zeta(n)^(-a(n)).
Number of aperiodic necklaces with n beads of 4 colors. - Herbert Kociemba, Nov 25 2016

References

  • E. R. Berlekamp, Algebraic Coding Theory, McGraw-Hill, NY, 1968, p. 84.
  • M. Lothaire, Combinatorics on Words. Addison-Wesley, Reading, MA, 1983, p. 79.

Crossrefs

Column k=4 of A074650.

Programs

  • Maple
    A027377 := proc(n) local d,s; if n = 0 then RETURN(1); else s := 0; for d in divisors(n) do s := s+mobius(d)*4^(n/d); od; RETURN(s/n); fi; end;
  • Mathematica
    a[n_] := Sum[MoebiusMu[d]*4^(n/d), {d, Divisors[n]}] / n; a[0] = 1; Table[a[n], {n, 0, 23}](* Jean-François Alcover, Nov 29 2011 *)
    mx=40;f[x_,k_]:=1-Sum[MoebiusMu[i] Log[1-k*x^i]/i,{i,1,mx}];CoefficientList[Series[f[x,4],{x,0,mx}],x] (* Herbert Kociemba, Nov 25 2016 *)
  • PARI
    a(n)=if(n,sumdiv(n,d,moebius(d)<<(2*n/d))/n,1) \\ Charles R Greathouse IV, Nov 29 2011

Formula

a(n) = Sum_{d|n} mu(d)*4^(n/d)/n.
G.f.: k=4, 1 - Sum_{i>=1} mu(i)*log(1 - k*x^i)/i. - Herbert Kociemba, Nov 25 2016
a(n) = A054661(n) + 3 * A054660(n). - Andrey Zabolotskiy, Dec 17 2020
a(n) = 2 * (A054664(n) + A054660(n)). - Andrey Zabolotskiy, Dec 19 2020
a(n) = A054719(n)/n, n>0. - R. J. Mathar, Dec 16 2024
Showing 1-10 of 55 results. Next