cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A065431 Continued fraction expansion of Hardy-Littlewood constant (A065419) Product_{p prime >= 5} (1-(6*p^2-4*p+1)/(p-1)^4).

Original entry on oeis.org

0, 3, 3, 1, 29, 4, 1, 20, 1, 2, 1, 45, 1, 1, 1, 5, 2, 1, 6, 1, 7, 9, 1, 12, 5, 4, 1, 22, 8, 1, 1, 1, 4, 1, 2, 1, 1, 13, 2, 2, 1, 20, 1, 1, 6, 1, 4, 5, 8, 12, 1, 1, 1, 18, 1, 1, 1, 11, 1, 1813, 2, 1, 6, 2, 1, 517, 1, 1, 4, 3, 6, 1, 4, 1, 1, 7, 4, 24, 3, 5, 1, 5, 2, 4, 1, 24, 4, 2, 7, 9, 1, 59, 3, 1, 2
Offset: 0

Views

Author

Robert G. Wilson v, Nov 16 2001

Keywords

Crossrefs

Cf. A065419 (decimal expansion).

Programs

  • PARI
    contfrac(prodeulerrat(1-(6*p^2-4*p+1)/(p-1)^4, 1, 5)) \\ Amiram Eldar, Mar 10 2021

Extensions

Sign in definition corrected by R. J. Mathar, Feb 25 2009
Offset changed by Andrew Howroyd, Jul 04 2024

A027377 Number of irreducible polynomials of degree n over GF(4); dimensions of free Lie algebras.

Original entry on oeis.org

1, 4, 6, 20, 60, 204, 670, 2340, 8160, 29120, 104754, 381300, 1397740, 5162220, 19172790, 71582716, 268431360, 1010580540, 3817733920, 14467258260, 54975528948, 209430785460, 799644629550, 3059510616420
Offset: 0

Views

Author

Keywords

Comments

Apart from initial terms, exponents in expansion of A065419 as a product zeta(n)^(-a(n)).
Number of aperiodic necklaces with n beads of 4 colors. - Herbert Kociemba, Nov 25 2016

References

  • E. R. Berlekamp, Algebraic Coding Theory, McGraw-Hill, NY, 1968, p. 84.
  • M. Lothaire, Combinatorics on Words. Addison-Wesley, Reading, MA, 1983, p. 79.

Crossrefs

Column k=4 of A074650.

Programs

  • Maple
    A027377 := proc(n) local d,s; if n = 0 then RETURN(1); else s := 0; for d in divisors(n) do s := s+mobius(d)*4^(n/d); od; RETURN(s/n); fi; end;
  • Mathematica
    a[n_] := Sum[MoebiusMu[d]*4^(n/d), {d, Divisors[n]}] / n; a[0] = 1; Table[a[n], {n, 0, 23}](* Jean-François Alcover, Nov 29 2011 *)
    mx=40;f[x_,k_]:=1-Sum[MoebiusMu[i] Log[1-k*x^i]/i,{i,1,mx}];CoefficientList[Series[f[x,4],{x,0,mx}],x] (* Herbert Kociemba, Nov 25 2016 *)
  • PARI
    a(n)=if(n,sumdiv(n,d,moebius(d)<<(2*n/d))/n,1) \\ Charles R Greathouse IV, Nov 29 2011

Formula

a(n) = Sum_{d|n} mu(d)*4^(n/d)/n.
G.f.: k=4, 1 - Sum_{i>=1} mu(i)*log(1 - k*x^i)/i. - Herbert Kociemba, Nov 25 2016
a(n) = A054661(n) + 3 * A054660(n). - Andrey Zabolotskiy, Dec 17 2020
a(n) = 2 * (A054664(n) + A054660(n)). - Andrey Zabolotskiy, Dec 19 2020
a(n) = A054719(n)/n, n>0. - R. J. Mathar, Dec 16 2024

A065418 Decimal expansion of Hardy-Littlewood constant Product_{p prime >= 5} (1-(3*p-1)/(p-1)^3).

Original entry on oeis.org

6, 3, 5, 1, 6, 6, 3, 5, 4, 6, 0, 4, 2, 7, 1, 2, 0, 7, 2, 0, 6, 6, 9, 6, 5, 9, 1, 2, 7, 2, 5, 2, 2, 4, 1, 7, 3, 4, 2, 0, 6, 5, 6, 8, 7, 3, 3, 2, 3, 7, 2, 4, 5, 0, 8, 9, 9, 7, 3, 4, 4, 6, 0, 4, 8, 6, 7, 8, 4, 6, 1, 3, 1, 1, 6, 1, 3, 9, 1, 8, 8, 2, 0, 8, 0, 2, 9, 1, 3, 8, 6, 7, 6, 4, 0, 4, 6, 1, 7
Offset: 0

Views

Author

N. J. A. Sloane, Nov 15 2001

Keywords

Comments

For comparison: Product_{n>=5} (1-(3n-1)/(n-1)^3) = 3/8 . - R. J. Mathar, Feb 25 2009

Examples

			0.635166354604271207206696591272522417342...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 2.1, p. 86.

Crossrefs

Programs

  • Mathematica
    $MaxExtraPrecision = 500; digits = 99; terms = 500; P[n_] := PrimeZetaP[n] - 1/2^n - 1/3^n; LR = Join[{0, 0}, LinearRecurrence[{4, -3}, {-6, -24}, terms+10]]; r[n_Integer] := LR[[n]]; Exp[NSum[r[n]*P[n-1]/(n-1), {n, 3, terms}, NSumTerms -> terms, WorkingPrecision -> digits+10]] // RealDigits[#, 10, digits]& // First (* Jean-François Alcover, Apr 17 2016 *)
  • PARI
    prodeulerrat(1-(3*p-1)/(p-1)^3, 1, 5) \\ Amiram Eldar, Mar 10 2021

Formula

The constant equals Product_{n>=2} (zeta(n)*(1-2^-n)*(1-3^-n))^-A027376(n). - Michael Somos, Apr 05 2003

A269843 Decimal expansion of Hardy-Littlewood constant C_5 = Product_{p prime > 5} 1/(1-1/p)^5 (1-5/p).

Original entry on oeis.org

4, 0, 9, 8, 7, 4, 8, 8, 5, 0, 8, 8, 2, 3, 6, 4, 7, 4, 4, 7, 8, 7, 8, 1, 2, 1, 2, 3, 3, 7, 9, 5, 5, 2, 7, 7, 8, 9, 6, 3, 5, 8, 0, 1, 3, 2, 5, 4, 9, 4, 5, 4, 6, 9, 8, 2, 6, 3, 3, 6, 3, 9, 8, 8, 2, 2, 6, 4, 8, 2, 3, 6, 1, 7, 3, 9, 6, 5, 9, 6, 5, 1, 5, 4, 6, 0, 8, 4, 5, 4, 4, 9, 9, 6, 2, 0, 2, 8, 1
Offset: 0

Views

Author

Jean-François Alcover, Apr 17 2016

Keywords

Examples

			0.4098748850882364744787812123379552778963580132549454698263363988...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 2.1 Hardy-Littlewood Constants, p. 86.

Crossrefs

Programs

  • Mathematica
    $MaxExtraPrecision = 800; digits = 99; terms = 800; P[n_] := PrimeZetaP[n] - 1/2^n - 1/3^n - 1/5^n; LR = Join[{0, 0}, LinearRecurrence[{6, -5}, {-20, -120}, terms + 10]]; r[n_Integer] := LR[[n]]; Exp[NSum[r[n]*P[n - 1]/(n - 1), {n, 3, terms}, NSumTerms -> terms, WorkingPrecision -> digits + 10]] // RealDigits[#, 10, digits]& // First
  • PARI
    prodeulerrat(1/(1-1/p)^5*(1-5/p), 1, 7) \\ Amiram Eldar, Mar 11 2021

A333586 Skewes numbers for prime n-tuples p1, p2, ..., pn, with p2 - p1 = 2.

Original entry on oeis.org

1369391, 87613571, 1172531, 21432401, 204540143441, 7572964186421
Offset: 2

Views

Author

Hugo Pfoertner, Mar 30 2020

Keywords

Comments

a(n) is the least prime p1 starting an n-tuple of consecutive primes p1, ..., pn of minimal span pn - p1, with first gap p2 - p1 = 2, such that the difference of the occurrence count of these n-tuples and the prediction by the first Hardy-Littlewood conjecture has its first sign change. When more than one such tuple exists, the n-tuple with the lexicographically earliest sequence of gaps is chosen.
These primes are called Skewes's (or Skewes) numbers for prime k-tuples in analogy to the definition for single primes. See Tóth's article for details.
a(2) is the Skewes number for twin primes, first computed by Wolf (2011).
The minimal span s(n) = pn - p1 of the n-tuples with an initial gap of 2 is s(2) = 2, s(3) = 6, s(4) = 8, s(5) = 12, s(6) = 18, s(7) = 20, s(8) = 26.

Examples

			For n=6 two types of prime 6-tuples with first gap = 2 starting at p exist:
[p, p+2, p+6, p+8, p+12, p+18] and [p, p+2, p+8, p+12, p+14, p+18]. The first one has the lexicographically earlier sequence of gaps and is therefore chosen. The Hardy-Littlewood prediction for the number of such 6-tuples with p <= P is (C_6*15^5/2^13)*Integral_{x=2..P} 1/log(x)^6 dx with C_6 given in A269846. The 15049-th 6-tuple starting with a(6)=204540143441 is the first one for which n/Integral_{x=2..a(6)} 1/log(x)^6 dx = 17.29864469487 exceeds C_6*15^5/2^13 = 17.29861231158.
		

Crossrefs

The sequence of Skewes numbers always choosing the prime n-tuplets with minimal span, irrespective of the first gap, is A210439, and its variant A332493.

Programs

  • PARI
    Li(x, n)=intnum(t=2, n, 1/log(t)^x);
    \\ a(4)
    C4=0.307494878758327093123354486071076853*(27/2); \\ A065419
    \\ Start at 5 to exclude "fake" 4-tuple 3, 5, 7, 11
    p1=5; p2=7; p3=11; n=0; forprime(p=13, 10^9, if(p-p1==8&&p-p2==6, n++; d=n-C4*Li(4, p3); if(d>=0, print(p1, " ", n, ">", C4*Li(4, p)); break)); p1=p2; p2=p3; p3=p);
    \\ a(5)
    C5=(15^4/2^11)*0.409874885088236474478781212337955277896358; \\ A269843
    p1=3; p2=5; p3=7; p4=11; n=0; forprime(p=13, 10^9, if(p-p1==12&&p-p2==10, n++; d=n-C5*Li(5, p4); if(d>=0, print(p1, " ", n, ">", C5*Li(5, p)); break)); p1=p2; p2=p3; p3=p4; p4=p);

Extensions

Changed title and clarified definition by Hugo Pfoertner, May 11 2020

A269846 Decimal expansion of Hardy-Littlewood constant C_6 = Product_{p prime > 6} 1/(1-1/p)^6 (1-6/p).

Original entry on oeis.org

1, 8, 6, 6, 1, 4, 2, 9, 7, 3, 5, 8, 3, 5, 8, 3, 9, 6, 6, 5, 6, 9, 2, 4, 8, 4, 7, 9, 4, 4, 1, 8, 8, 3, 3, 7, 8, 4, 0, 0, 7, 3, 9, 4, 4, 9, 4, 5, 5, 8, 9, 3, 0, 4, 8, 7, 1, 7, 2, 6, 6, 9, 1, 8, 3, 8, 9, 8, 0, 7, 4, 4, 9, 2, 4, 3, 8, 0, 8, 1, 9, 6, 2, 7, 0, 6, 2, 6, 1, 9, 0, 3, 2, 8, 0, 6, 3, 1, 0
Offset: 0

Views

Author

Jean-François Alcover, Apr 17 2016

Keywords

Examples

			0.18661429735835839665692484794418833784007394494558930487172669...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 2.1 Hardy-Littlewood Constants, p. 86.

Crossrefs

Programs

  • Mathematica
    $MaxExtraPrecision = 1600; digits = 99; terms = 1600; P[n_] := PrimeZetaP[ n] - 1/2^n - 1/3^n - 1/5^n; LR = Join[{0, 0}, LinearRecurrence[{7, -6}, {-30, -210}, terms+10]]; r[n_Integer] := LR[[n]]; Exp[NSum[r[n]*P[n-1]/(n - 1), {n, 3, terms}, NSumTerms -> terms, WorkingPrecision -> digits+10]] // RealDigits[#, 10, digits]& // First
  • PARI
    prodeulerrat(1/(1-1/p)^6*(1-6/p), 1, 7) \\ Amiram Eldar, Mar 11 2021

A271742 Decimal expansion of Hardy-Littlewood constant C_7 = Product_{p prime > 7} 1/(1-1/p)^7 (1-7/p).

Original entry on oeis.org

3, 6, 9, 4, 3, 7, 5, 1, 0, 3, 8, 6, 4, 9, 8, 6, 8, 9, 3, 2, 3, 1, 9, 0, 7, 4, 9, 8, 7, 6, 7, 5, 0, 7, 7, 7, 0, 5, 5, 3, 7, 2, 9, 1, 3, 8, 9, 3, 0, 3, 1, 8, 2, 5, 2, 9, 1, 0, 1, 2, 3, 0, 2, 9, 0, 7, 7, 3, 9, 2, 9, 9, 5, 7, 3, 9, 1, 7, 7, 7, 8, 4, 2, 8, 2, 7, 6, 8, 3, 3, 5, 0, 0, 0, 6, 9, 3, 1, 7
Offset: 0

Views

Author

Jean-François Alcover, Apr 17 2016

Keywords

Examples

			0.3694375103864986893231907498767507770553729138930318252910123...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 2.1 Hardy-Littlewood Constants, p. 86.

Crossrefs

Programs

  • Mathematica
    $MaxExtraPrecision = 1100; digits = 99; terms = 1000; P[n_] := PrimeZetaP[ n] - 1/2^n - 1/3^n - 1/5^n - 1/7^n; LR = Join[{0, 0}, LinearRecurrence[ {8, -7}, {-42, -336}, terms+10]]; r[n_Integer] := LR[[n]]; Exp[ NSum[ r[n]*P[n-1]/(n-1), {n, 3, terms}, NSumTerms -> terms, WorkingPrecision -> digits+10]] // RealDigits[#, 10, digits]& // First
  • PARI
    prodeulerrat(1/(1-1/p)^7*(1-7/p), 1, 11) \\ Amiram Eldar, Mar 11 2021

A374831 Decimal expansion of Product_{p prime} (1 - (1/(p*(p - 1)))*p^2/(p^2 + 1)).

Original entry on oeis.org

4, 5, 8, 9, 3, 7, 4, 9, 8, 5, 0, 5, 4, 3, 5, 9, 6, 1, 3, 0, 6, 3, 4, 2, 6, 1, 8, 1, 0, 0, 1, 8, 9, 3, 8, 5, 6, 7, 2, 0, 0, 8, 1, 6, 3, 7, 4, 5, 2, 8, 9, 8, 1, 2, 3, 4, 2, 8, 7, 5, 7, 7, 7, 7, 3, 1, 7, 5, 4, 5, 6, 6, 1, 2, 2, 5, 4, 3, 0, 8, 5, 8, 9, 2, 2, 8, 6, 2, 5, 4, 3, 2, 0, 9, 3, 5, 8, 0, 7, 8, 2, 5, 7, 2, 9
Offset: 0

Views

Author

Stefano Spezia, Jul 21 2024

Keywords

Examples

			0.4589374985054359613063426181...
		

Crossrefs

Cf. A005596, A005597, A065414, A065418, A065419, A374830 (lower bound).

Programs

  • PARI
    prodeulerrat(1-p^2/(p*(p-1)*(p^2+1)))

A061642 Decimal expansion of Hardy-Littlewood constant for prime quadruples.

Original entry on oeis.org

4, 1, 5, 1, 1, 8, 0, 8, 6, 3, 2, 3, 7, 4, 1, 5, 7, 5, 7, 1, 6, 5, 2, 8, 5, 5, 6, 1, 9, 5, 9, 5, 3, 7, 5, 1, 5, 7, 9, 9, 4, 1, 0, 0, 1, 9, 3, 3, 3, 9, 6, 3, 0, 3, 2, 0, 2, 7, 1, 6, 3, 3, 4, 9, 5, 2, 1, 9, 9, 8, 3, 5, 8, 5, 0, 5, 3, 5, 5, 4, 2, 9, 9, 8, 6, 8, 4, 3, 5, 7, 3, 2, 0, 3, 1, 5, 1, 6, 6, 8, 3, 3, 4, 0, 6
Offset: 1

Views

Author

Jason Earls, Jun 13 2001

Keywords

Comments

Computed by Robert Harley.

Examples

			4.151180863237415757165285561959537515799410019333963032027163...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge, 2003, pp. 84-94.

Crossrefs

Cf. A065419 (constant without factor 27/2), A333586, A333587.

Programs

  • Mathematica
    $MaxExtraPrecision = 1500; digits = 105; terms = 1500; P[n_] := PrimeZetaP[n] - 1/2^n - 1/3^n; LR = Join[{0, 0}, LinearRecurrence[{5, -4}, {-12, -60}, terms + 10]]; r[n_Integer] := LR[[n]]; (27/2)* Exp[NSum[ r[n]*P[n-1]/(n-1), {n, 3, terms}, NSumTerms -> terms,WorkingPrecision -> digits + 10]] // RealDigits[#, 10, digits]& // First (* Jean-François Alcover, Apr 16 2016 *)
  • PARI
    (27/2) * prodeulerrat((p^3)*(p-4)/((p-1)^4), 1, 5) \\ Amiram Eldar, Mar 12 2021

Formula

Equals (27/2) * Product_{p prime > 3} (p^3)*(p-4)/((p-1)^4) using 27/2 = (3*(11+13)+(17+19))/4. - Frank Ellermann, Mar 31 2020
Showing 1-9 of 9 results.