A074062 Reflected (see A074058) pentanacci numbers A074048.
5, -1, -1, -1, -1, 9, -7, -1, -1, -1, 19, -23, 5, -1, -1, 39, -65, 33, -7, -1, 79, -169, 131, -47, 5, 159, -417, 431, -225, 57, 313, -993, 1279, -881, 339, 569, -2299, 3551, -3041, 1559, 799, -5167, 9401, -9633, 6159, 39, -11133, 23969, -28667, 21951, -6081, -22305
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Mario Catalani, Polymatrix and Generalized Polynacci Numbers, arXiv:math/0210201 [math.CO], 2002.
- Index entries for linear recurrences with constant coefficients, signature (-1,-1,-1,-1,1).
Programs
-
Magma
I:=[5,-1,-1,-1,-1]; [n le 5 select I[n] else (-1)*(Self(n-1) +Self(n-2) +Self(n-3) +Self(n-4)) + Self(n-5): n in [1..61]]; // G. C. Greubel, Jul 05 2021
-
Mathematica
CoefficientList[Series[(5+4*x+3*x^2+2*x^3+x^4)/(1+x+x^2+x^3+x^4-x^5), {x, 0, 60}], x]
-
PARI
Vec((5+4*x+3*x^2+2*x^3+x^4)/(1+x+x^2+x^3+x^4-x^5) + O(x^60)) \\ Michel Marcus, Sep 14 2020
-
Sage
def A074062_list(prec): P.
= PowerSeriesRing(ZZ, prec) return P( (5+4*x+3*x^2+2*x^3+x^4)/(1+x+x^2+x^3+x^4-x^5) ).list() A074062_list(60) # G. C. Greubel, Jul 05 2021
Formula
a(n) = -a(n-1) -a(n-2) -a(n-3) -a(n-4) +a(n-5), a(0)=5, a(1)=-1, a(2)=-1, a(3)=-1, a(4)=-1.
G.f.: (5 +4*x +3*x^2 +2*x^3 +x^4)/(1 +x +x^2 +x^3 +x^4 -x^5).
Extensions
More terms from Michel Marcus, Sep 14 2020
Comments