cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A074062 Reflected (see A074058) pentanacci numbers A074048.

Original entry on oeis.org

5, -1, -1, -1, -1, 9, -7, -1, -1, -1, 19, -23, 5, -1, -1, 39, -65, 33, -7, -1, 79, -169, 131, -47, 5, 159, -417, 431, -225, 57, 313, -993, 1279, -881, 339, 569, -2299, 3551, -3041, 1559, 799, -5167, 9401, -9633, 6159, 39, -11133, 23969, -28667, 21951, -6081, -22305
Offset: 0

Views

Author

Mario Catalani (mario.catalani(AT)unito.it), Aug 17 2002

Keywords

Comments

a(n) is also the trace of A^(-n), where A is the matrix ( (1,1,0,0,0), (1,0,1,0,0), (1,0,0,1,0), (1,0,0,0,1), (1,0,0,0,0) ).
a(n) is also the sum of determinants of 4th-order principal minors of A^n.

Crossrefs

Programs

  • Magma
    I:=[5,-1,-1,-1,-1]; [n le 5 select I[n] else (-1)*(Self(n-1) +Self(n-2) +Self(n-3) +Self(n-4)) + Self(n-5): n in [1..61]]; // G. C. Greubel, Jul 05 2021
    
  • Mathematica
    CoefficientList[Series[(5+4*x+3*x^2+2*x^3+x^4)/(1+x+x^2+x^3+x^4-x^5), {x, 0, 60}], x]
  • PARI
    Vec((5+4*x+3*x^2+2*x^3+x^4)/(1+x+x^2+x^3+x^4-x^5) + O(x^60)) \\ Michel Marcus, Sep 14 2020
    
  • Sage
    def A074062_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( (5+4*x+3*x^2+2*x^3+x^4)/(1+x+x^2+x^3+x^4-x^5) ).list()
    A074062_list(60) # G. C. Greubel, Jul 05 2021

Formula

a(n) = -a(n-1) -a(n-2) -a(n-3) -a(n-4) +a(n-5), a(0)=5, a(1)=-1, a(2)=-1, a(3)=-1, a(4)=-1.
G.f.: (5 +4*x +3*x^2 +2*x^3 +x^4)/(1 +x +x^2 +x^3 +x^4 -x^5).

Extensions

More terms from Michel Marcus, Sep 14 2020